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Preface

Commutative algebra has developed in step with algebraic geometry and has
played an essential role as the foundation of algebraic geometry. On the other
hand, homological aspects of modern commutative algebra became a new and
important focus of research inspired by the work of Melvin Hochster. In 1975,
Richard Stanley [Sta75] proved affirmatively the upper bound conjecture for
spheres by using the theory of Cohen-Macaulay rings. This created another
new trend of commutative algebra, as it turned out that commutative algebra
supplies basic methods in the algebraic study of combinatorics on convex
polytopes and simplicial complexes. Stanley was the first to use concepts and
techniques from commutative algebra in a systematic way to study simplicial
complexes by considering the Hilbert function of Stanley—Reisner rings, whose
defining ideals are generated by squarefree monomials. Since then, the study of
squarefree monomial ideals from both the algebraic and combinatorial points
of view has become a very active area of research in commutative algebra.

In the late 1980s the theory of Grobner bases came into fashion in many
branches of mathematics. Grobner bases, together with initial ideals, provided
new methods. They have been used not only for computational purposes but
also to deduce theoretical results in commutative algebra and combinatorics.
For example, based on the fundamental work by Gel’fand, Kapranov, Zelevin-
sky and Sturmfels, far beyond the classical techniques in combinatorics, the
study of regular triangulations of a convex polytope by using suitable initial
ideals turned out to be a very successful approach, and, after the pioneering
work of Sturmfels [Stu90], the algebraic properties of determinantal ideals
have been explored by considering their initial ideal, which for a suitable
monomial order is a squarefree monomial ideal and hence is accessible to
powerful techniques.

At about the same time Galligo, Bayer and Stillman observed that generic
initial ideals have particularly nice combinatorial structures and provide a
basic tool for the combinatorial and computational study of the minimal free
resolution of a graded ideal of the polynomial ring. Algebraic shifting, which
was introduced by Kalai and which contributed to the modern development
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of enumerative combinatorics on simplicial complexes, can be discussed in the
frame of generic initial ideals.

The present monograph invites the reader to become acquainted with cur-
rent trends in combinatorial commutative algebra, with the main emphasis
on basic research into monomials and monomial ideals. Apart from a few
exceptions, where we refer to the books [BH98], [Kun08] and [Mat80], only
basic knowledge of commutative algebra is required to understand most of
the monograph. Part I is a self-contained introduction to the modern theory
of Grébner bases and initial ideals. Its highlight is a quick introduction to
the theory of Grobner bases (Chapter 2), and it also offers a detailed de-
scription of, and information about, generic initial ideals (Chapter 4). Part II
covers Hilbert functions and resolutions and some of the combinatorics related
to monomial ideals, including the Kruskal-Katona theorem and algebraic as-
pects of Alexander duality. In Part III we discuss combinatorial applications of
monomial ideals. The main topics include edge ideals of finite graphs, powers
of ideals, algebraic shifting theory and an introduction to polymatroids.

We now discuss the contents of the monograph in detail together with a
brief history of commutative algebra and combinatorics on monomials and
monomial ideals.

Chapter 1 summarizes fundamental material on monomial ideals. In par-
ticular, we consider the integral closure of monomial ideals, squarefree nor-
mally torsionfree ideals, squarefree monomial ideals and simplicial complexes,
Alexander duality and polarization of monomial ideals.

In Chapter 2 a short introduction to the main features of Grobner basis
theory is given, including the Buchberger criterion and algorithm. These basic
facts are discussed in a comprehensive but compact form.

Chapter 3 presents one of the most fundamental results on initial ideals,
which says that the graded Betti numbers of the initial ideal in< (I) are greater
than or equal to the corresponding graded Betti numbers of I. This fact is
used again and again in this book, especially in shifting theory.

Chapter 4 concerns generic initial ideals. This theory plays an essential
role in the combinatorial applications considered in Part III. Therefore, for the
sake of completeness, we present in Chapter 4 the main theorems on generic
initial ideals together with their complete proofs. Generic initial ideals are
Borel-fixed. They belong to the more general class of Borel type ideals for
which various characterizations are given. Generic annihilator numbers and
extremal Betti numbers are introduced, and it is shown that extremal Betti
numbers are invariant under taking generic initial ideals.

Chapter 5 is devoted to establishing the theory of Grébner bases in the
exterior algebra, and uses exterior techniques to give a proof of the Alexander
duality theorem which establishes isomorphisms between simplicial homology
and cohomology of a simplicial complex and its Alexander dual.

Chapter 6 offers basic material on combinatorics of monomial ideals. First
we recall the concepts of Hilbert functions and Hilbert polynomials, and their
relationship to the f-vector of a simplicial complex is explained. We study in
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detail the combinatorial characterization of Hilbert functions of graded ideals
due to Macaulay together with its squarefree analogue, the Kruskal-Katona
theorem, which describes the possible face numbers of simplicial complexes.
Lexsegment ideals as well as squarefree lexsegment ideals play the key role in
the discussion.

Chapter 7 discusses minimal free resolutions of monomial ideals. We derive
formulas for the graded Betti numbers of stable and squarefree stable ideals,
and use these formulas to deduce the Bigatti-Hulett theorem which says that
lexsegment ideals have the largest graded Betti numbers among all graded
ideals with the same Hilbert function. We also present the squarefree analogue
of the Bigatti—Hulett theorem, and give the comparison of Betti numbers over
the symmetric and exterior algebra.

Chapter 8 begins with Hochster’s formula to compute the graded Betti
numbers of Stanley—Reisner ideals and Reisner’s Cohen-Macaulay criterion
for simplicial complexes. Then the Eagon—Reiner theorem and variations of it
are discussed. In particular, ideals with linear quotients, componentwise linear
ideals, sequentially Cohen—Macaulay ideals and shellable simplicial complexes
are studied.

Chapter 9 deals with the algebraic aspects of Dirac’s theorem on chordal
graphs and the classification problem for Cohen—-Macaulay graphs. First the
classification of bipartite Cohen—Macaulay graphs is given. Then unmixed
graphs are characterized and we present the result which says that a bipartite
graph is sequentially Cohen—Macaulay if and only if it is shellable. It follows
the classification of Cohen—Macaulay chordal graphs. Finally the relationship
between the Hilbert—-Burch theorem and Dirac’s theorem on chordal graphs
is explained.

Chapter 10 is devoted to the study of powers of monomial ideals. We be-
gin with a brief introduction to toric ideals and Rees algebras, and present a
Grobner basis criterion which guarantees that all powers of an ideal have a
linear resolution. As an application it is shown that all powers of monomial
ideals with 2-linear resolution have a linear resolution. Then the depth of pow-
ers of monomial ideals, and Mengerian and unimodular simplicial complexes
are considered.

Chapter 11 offers a self-contained and systematic presentation of modern
shifting theory from the viewpoint of generic initial ideals as well as of graded
Betti numbers. Combinatorial, exterior and symmetric shifting are introduced
and the comparison of the graded Betti numbers for the distinct shifting
operators is studied. It is shown that the extremal graded Betti numbers
of a simplicial complex and its symmetric and exterior shifted complex are
the same. Finally, super-extremal Betti numbers are considered to give an
algebraic proof of the Bjorner-Kalai theorem.

In Chapter 12 we consider discrete polymatroids and polymatroidal ideals.
After giving a short introduction to the combinatorics and geometry of discrete
polymatroids, the algebraic properties of its base ring are studied. We close
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Chapter 12 by presenting polymatroidal and weakly polymatroidal ideals,
which provide large classes of ideals with linear quotients.

It becomes apparent from the above detailed description of the topics
discussed in this monograph that the authors have chosen those combinatorial
topics which are strongly related to monomial ideals. Binomial ideals, toric
rings and convex polytopes are not the main topic of this book. We refer the
reader to Sturmfels [Stu96], Miller—Sturmfels [MS04] and Bruns-Gubeladze
[BG09]. We also do not discuss the pioneering work by Richard Stanley on
the upper bound conjecture for spheres. For this topic we refer the reader to
Bruns—Herzog [BH98], Hibi [Hib92] and Stanley [Sta95].

We have tried as much as possible to make our presentation self-contained,
and we believe that combinatorialists who are familiar with only basic materi-
als on commutative algebra will understand most of this book without having
to read other textbooks or research papers. However, for the convenience of
the reader who is not so familiar with commutative algebra and convex ge-
ometry we have added an appendix in which we explain some fundamental
algebraic and geometric concepts which are used in this book. In addition,
researchers working on applied mathematics who want to learn Grobner basis
theory quickly as a basic tool for their work need only consult Chapter 2.
Since shifting theory is rather technical, the reader may skip Chapters 4-7
and 11 (which are required for the understanding of shifting theory) on a first
reading.

We conclude each chapter with a list of problems. They are intended to
complement and provide better understanding of the topics treated in each
chapter.

We are grateful to Viviana Ene and Rahim Zaare-Nahandi for their com-
ments and for suggesting corrections in some earlier drafts of this monograph.

Essen, Osaka Jurgen Herzog
February 2010 Takayuk: Hibe
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Grobner bases






1

Monomial Ideals

Monomials form a natural K-basis in the polynomial ring S = K[z, ..., z,]
defined over the field K. An ideal I which is generated by monomials, a so-
called monomial ideal, also has a K-basis of monomials. As a consequence, a
polynomial f belongs to I if and only if all monomials in f appearing with
a nonzero coefficient belong to I. This is one of the reasons why algebraic
operations with monomial ideals are easy to perform and are accessible to
combinatorial and convex geometric arguments. One may take advantage of
this fact when studying general ideals in S by considering its initial ideal with
respect to some monomial order.

1.1 Basic properties of monomial ideals

1.1.1 The K-basis of a monomial ideal

Let K be a field, and let S = K|[x1,...,x,] be the polynomial ring in n
variables over K. Let R? denote the set of those vectors a = (ay,...,a,) € R"
with each a; > 0, and Z7} = R} NZ". In addition, we denote as usual, the set
of positive integers by N.

Any product x{*---z% with a; € Z; is called a monomial. If u =
x{" -+ -8 is a monomial, then we write v = x* with a = (ay,...,a,) € Z7}.
Thus the monomials in S correspond bijectively to the lattice points in R,
and we have

x2xP = x2P,
The set Mon(S) of monomials of S is a K-basis of S. In other words, any
polynomial f € S is a unique K-linear combination of monomials. Write

f= Z a,u  with a, € K.
u€Mon(S)

Then we call the set

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 3
DOI 10.1007/978-0-85729-106-6_1, (©) Springer-Verlag London Limited 2011
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supp(f) = {u € Mon(S) : a, # 0}
the support of f.

Definition 1.1.1. An ideal I C S is called a monomial ideal if it is gener-
ated by monomials.

An important property of monomial ideals is given in the following.
Theorem 1.1.2. The set N' of monomials belonging to I is a K-basis of I.

Proof. Tt is clear that the elements of N are linearly independent, as N is a
subset of Mon(S).

Let f € I be an arbitrary polynomial. We will show that supp(f) C N.
This then yields that A is a system of generators of the K-vector space I.

Indeed, since f € I, there exist monomials uq,...,u,, € I and poly-
nomials fi,..., fm € S such that f = Y7 fiu;. It follows that supp(f) C
Ui~ supp(fiu;). Note that supp(fiu;) C N for all i, since each v € supp(fiu;)
is of the form wu; with w € Mon(S), and hence belongs to I. It follows that
supp(f) C N, as desired. O

Recall from basic commutative algebra that an ideal I C S is graded if,
whenever f € I, all homogeneous components of f belong to I. Monomial
ideals can be characterized similarly.

Corollary 1.1.3. Let I C S be an ideal. The following conditions are equiv-
alent:

(a) I is a monomial ideal;
(b) for all f € S one has: f € I if and only if supp(f) C I.

Proof. (a) = (b) follows from Theorem 1.1.2.
(b) = (a): Let f1,..., fm be a set of generators of I. Since supp(f;) C I
for all 4, it follows that (J;~, supp(f;) is a set of monomial generators of I. O

Let I C S be an ideal. We overline an element or a set to denote its image
modulo 1.

Corollary 1.1.4. Let I be a monomial ideal. The residue classes of the mono-
mials not belonging to I form a K-basis of the residue class ring S/I.

Proof. Let W be the set of monomials not belonging to I. It is clear that W
is a set of generators of the K-vector space S/I. Suppose there is a non-trivial
linear combination

Z A, =0

weW

of zero. Then f =} ), aww € I. Hence Corollary 1.1.3 implies that w € I
for a,, # 0, a contradiction. O
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1.1.2 Monomial generators

In any algebra course one learns that the polynomial ring S = K{z1,...,z,]
is Noetherian. This is Hilbert’s basis theorem. We will give a proof of this
theorem in the next chapter. Here we only need that any monomial ideal
is finitely generated. This is a direct consequence of Dickson’s lemma, also
proved in the next chapter.

The set of monomials which belong to I can be described as follows:

Proposition 1.1.5. Let {uq,...,uy,} be a monomial system of generators of
the monomial ideal I. Then the monomial v belongs to I if and only if there
exists a monomial w such that v = wu; for some 1.

Proof. Suppose that v € I. Then there exist polynomials f; € S such that
v=>", fiu;. It follows that v € |J;~, supp(fiu;), and hence v € supp(fiu;)
for some 4. This implies that v = wu; for some w € supp(f;). The other
implication is trivial. a

For a graded ideal all minimal sets of generators have the same cardinality.
For monomial ideals one even has:

Proposition 1.1.6. Each monomial ideal has a unique minimal monomial set
of generators. More precisely, let G denote the set of monomials in I which
are minimal with respect to divisibility. Then G is the unique minimal set of
monomial generators.

Proof. Let G1 = {u1,...,u,} and Go = {v1,...,vs} be two minimal sets of
generators of the monomial ideal I. Since u; € I, there exists v; such that
u; = wiv; for some monomial wy. Similarly there exists uj and a monomial
wa such that v; = wouy. It follows that u; = wywouy. Since G is a minimal
set of generators of I, we conclude that k = ¢ and wyws = 1. In particular,
wy = 1 and hence u; = v; € G. This shows that G; C G2. By symmetry we
also have G5 C G;. a

It is common to denote the unique minimal set of monomial generators of
the monomial ideal I by G(I).

1.1.3 The Z™-grading

Let a € Z™; then f € S is called homogeneous of degree a if f is of the
form ¢x® with ¢ € K. The polynomial ring S is obviously Z"-graded with
graded components
S, = Kx2, 1fa€Z+,
0, otherwise.

An S-module M is called Z"-graded if M = @
for all a,b € Z™.

aczn Ma and SaMb C Ma+b
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Let M, N be Z"-graded S-modules. A module homomorphism ¢ : N —
M is called homogeneous module homomorphism if ¢(N,) C M, for all
a € Z", and N is called a Z™-graded submodule of M if N C M and the
inclusion map is homogeneous. In this case the factor module M /N inherits
a natural Z"-grading with components (M/N)a = Ma/N, for all a € Z™.

Observe that an ideal I C S is a Z"-graded submodule of S if and only if
it is a monomial ideal, in which case S/I is also naturally Z"-graded.

1.2 Algebraic operations on monomial ideals

1.2.1 Standard algebraic operations

It is obvious that sums and products of monomial ideals are again monomial
ideals. Moreover, if I and J are monomial ideals, then G(I+J) C G(I)U G(J)
and G(IJ) C G(I)G(J).

Given two monomials u and v, we denote by ged(u, v) the greatest common
divisor and by lem(u,v) the least common multiple of v and v.

For the intersection of monomial ideals we have

Proposition 1.2.1. Let I and J be monomial ideals. Then I N J is a mono-
mial ideal, and {lem(u,v) : u € G(I), v € G(J)} is a set of generators of
IndJ.

Proof. Let f € I N J. By Corollary 1.1.3, supp(f) C I N J. Again applying
Corollary 1.1.3 we see that I N J is a monomial ideal.

Let w € supp(f); then since supp(f) C I N J, there exists u € G(I)
and v € G(J) such that ulw and v|w. It follows that lem(u,v) divides w.
Since lem(u,v) € I'NJ for all w € G(I) and v € G(J), we conclude that
{lem(u,v) : we€ G(I),v € G(J)} is indeed a set of generators of I N .J. O

Let I,J C S be two ideals. The set
I:J={feS:fgelforallgeJ}
is an ideal, called the colon ideal of I with respect to J.

Proposition 1.2.2. Let I and J be monomial ideals. Then I : J is a mono-
mial ideal, and
1:J= ﬂ I:(v).
veG(J)
Moreover, {u/ged(u,v) : we€ G(I)} is a set of generators of I : (v).

Proof. Let f €I:J.Then fv e I for all v € G(J). In view of Corollary 1.1.3
we have supp(f)v = supp(fv) C I. This implies that supp(f) C I : J. Thus
Corollary 1.1.3 yields that I : J is a monomial ideal.

The given presentation of I : J as an intersection is obvious, and it is also
clear that {u/ged(u,v) : v € G(I)} CI: (v). Sonow let w € I : (v). Then
there exists u € G(I) such that u divides wv. This implies that u/ ged(u, v)
divides w, as desired. O
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1.2.2 Saturation and radical

Let I C S be a graded ideal. We denote by m = (x1,...,x,) the graded
maximal ideal of S.
The saturation [ of I is the ideal

I:m",

(@

I:m*>™® =
k

1

while the ideal VI = {f € S: f¥ €I for some k} is called the radical of I.
The ideal I is called saturated if I = I and is called a radical ideal if

I=+I.

Proposition 1.2.3. The saturation and the radical of a monomial ideal are
again monomial ideals.

Proof. By Proposition 1.2.2, T : m* is a monomial ideal for all k. Since T is
the union of these ideals, it is a monomial ideal.

Let f = ex® 4 --- € /T with 0 # ¢ € K. Then f* € I, and consequently
supp(f*) C I, since I is a monomial ideal. Let supp(f) = {x®1,...,x2 }. The
convex hull of the set {aj,...,a,} C R™ is a polytope. We may assume that a;
is a vertex of this polytope, in other words, a; does not belong to the convex
hull of {ag,...,a.}.

Assume (x21)F = (x21)k1(x32)k2 ... (x2 )k with k = ky + ko +- -+ k, and
k1 < k. Then

T

a; = Z(kz/(k‘ — kl))ai with Z(kl/(k — k‘l)) = 1,

=2

so a; is not a vertex, a contradiction. It follows that the monomial (x2)*
cannot cancel against other terms in f* and hence belongs to supp(f*), which
is a subset of I. Therefore x2 € /T and f—cx* e VI By induction on the
cardinality of supp(f) we conclude that supp(f) C V1. Thus Corollary 1.1.3
implies that v/T is a monomial ideal. a

The radical of a monomial ideal I can be computed explicitly. A monomial
x? is called squarefree if the components of a are 0 or 1. Let u = x* be a

monomial. We set
i,aﬁéO

One has /u = u if and only if v is squarefree.

Proposition 1.2.4. Let I be a monomial ideal. Then {y/u: u € G(I)} is a
set of generators of /1.
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Proof. Obviously {\/u : u € G(I)} C VI. Since VT is a monomial ideal it
suffices to show that each monomial v € /T is a multiple of some \/u with
u € G(I). In fact, if v € V/T then v* € T for some integer k > 0, and therefore
v* = wu for some u € G(I) and some monomial w. This yields the desired

conclusion. O

A monomial ideal I is called a squarefree monomial idealif I is gen-
erated by squarefree monomials. As a consequence of Proposition 1.2.4 we
have

Corollary 1.2.5. A monomial ideal I is a radical ideal, that is, I = /1, if
and only if I is a squarefree monomial ideal.

1.3 Primary decomposition and associated prime ideals

1.3.1 Irreducible monomial ideals

A presentation of an ideal I as an intersection I = ﬂ;il Q; of ideals is called
irredundant if none of the ideals (); can be omitted in this presentation.
We have the following fundamental fact.

Theorem 1.3.1. Let I C S = Klx1,...,x,] be a monomial ideal. Then
I =N, Q;, where each Q; is generated by pure powers of the variables. In
other words, each Q; is of the form (x7!,...,x{}). Moreover, an irredundant

presentation of this form is unique.

R

Proof. Let G(I) = {uy,...,u,}, and suppose some u; is not a pure power,
say u1. Then we can write u; = vw where v and w are coprime monomials,
that is, ged(v,w) = 1 and v # 1 # w. We claim that I = I; N Iy where
I = (v,ua,...,u,) and Iy = (w,ug, ..., u.).

Obviously, I is contained in the intersection. Conversely, let © be a mono-
mial in Iy N 5. If v is a multiple of one of the w;, then u € I. If not, then u is
a multiple of v and of w, and hence of u;, since v and w are coprime. In any
case, u € I.

If either G(I1) or G(I2) contains an element which is not a pure power, we
proceed as before and obtain after a finite number of steps a presentation of 1
as an intersection of monomial ideals generated by pure powers. By omitting
those ideals which contain the intersection of the others we end up with an
irredundant intersection.

Let Q1 N---NQr =Q)N---NQ. two irredundant intersections of ideals
generated by pure powers. We will show that for each i € [r] there exists
Jj € [s] such that @} C @Q;. By symmetry we then also have that for each
k € [s] there exists an £ € [r] such that @, C Q}. This will then imply that

r=s and {Q17aQr}:{Q/1a7Qg}
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In fact, let ¢ € [r]. We may assume that Q; = (27", ..., 2}*). Suppose that
Q) ¢ Q; for all j € [s]. Then for each j there exists xl,z € Q \ Qi. It follows
that either £; & [k] or b; < ay,. Let

u= 1cm{x2, . ,.’I,‘ZZ}.

We have u € ();_; Qj C Qi. Therefore there exists i € [k] such that zf
divides u. But this is obviously impossible. a

A monomial ideal is called irreducible if it cannot be written as proper
intersection of two other monomial ideals. It is called reducible if it is not
irreducible.

Corollary 1.3.2. A monomial ideal is irreducible if and only if it is generated
by pure powers of the variables.

Proof. Let Q = (7!, .. ,x?:’), and suppose Q = INJ where I and J are mono-
mial ideals properly containing ). By Theorem 1.3.1 we have I = (;_, Q; and
J= ﬂ;zl Q) where the Q; and @Q’; are generated by powers of the variables.
Thus we get the presentation

By omitting suitable ideals in the intersection on the right-hand side, we ob-
tain an irredundant presentation of (). The uniqueness statement in Theorem
1.3.1 then implies that Q@ = Q; or Q = Q; for some i or j, a contradiction.
Conversely, if G(Q) contains a monomial v = vw with ged(v, w) = 1 and
v # 1 # w, then, as in the proof of Theorem 1.3.1, () can be written a proper
intersection of monomial ideals. O

Theorem 1.3.1 in combination with Corollary 1.3.2 now says that each
monomial ideal has a unique presentation as an irredundant intersection of
irreducible monomial ideals.

The proof of Theorem 1.3.1 shows us how we can find such a presentation.
The following example illustrates the procedure.

FEzxample 1.3.3. Let
I = (m%xg,wfxg,xg,xgxg).
Then
I= (.Z‘%, x%x%,x%, xQxiQ%) N ($27 x%l‘gﬂ l‘%,l‘gmg) = ($%; xgvaJ;%) N (Z‘Q,l‘?l‘g)
= (x%, CU%,LL‘Q) N (x%x%,xg) N (xg,x%) N (x27x§)

- (1'%’ x%vx:%) N (xixQ) N (mQa Z%)
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If I is a squarefree monomial ideal, the above procedure yields that the
irreducible monomial ideals appearing in the intersection of I are all of the
form (x;,,...,x;, ). These are obviously exactly the monomial prime ideals.
Thus we have shown

Corollary 1.3.4. A squarefree monomial ideal is an intersection of monomial
prime ideals.

Let R be a ring and I C R an ideal. A prime ideal P is called a minimal
prime ideal of I, if I C P and there is no prime ideal containing I which
is properly contained in P. We denote the set minimal prime ideals of I by
Min(7).

We recall the following general fact.

Lemma 1.3.5. Suppose I has irredundant presentation I = Py N---N P, as
an intersection of prime ideals. Then Min(I) = {Py,..., P,}

Proof. Suppose P; is not a minimal prime ideal of I. Then there exists a prime
ideal P with I C P, and P is properly contained in P;. Since P;Rp, = Rp,
for i # j and since localization commutes with intersections, it follows that
IRp, = P,Rp,, contradicting the fact that PRp, contains I Rp, and is properly
contained in P;Rp,.

On the other hand, if P is a prime ideal containing I, then P, Ps--- P, C
Pyn---NPB, C P. So one of the P; must be contained in P. Hence if P is a
minimal prime ideal of I, then P = P;.

Combining Corollary 1.3.4 with Lemma 1.3.5 we obtain

Corollary 1.3.6. Let I C S be a squarefree monomial ideal. Then

I= () P

PeMin(I)

and each P € Min(I) is a monomial prime ideal.

1.3.2 Primary decompositions

Let R be a Noetherian ring and M a finitely generated R-module. A prime
ideal P C R is called an associated prime ideal of M, if there exists an
element © € M such that P = Ann(z). Here Ann(xz) is the annihilator of «,
that is to say, Ann(z) = {a € R: ax = 0}. The set of associated prime ideals
of M is denoted Ass(M).

A prime ideal P C R is called a minimal prime ideal of M, if Mp # 0,
and for each prime ideal @) properly contained in P one has Mg = 0. Observe
that P is minimal prime ideal of R/I if and only if I C P, and there is no
prime ideal I C @ which is properly contained in P. It is known that Ass(M)
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is a finite set containing all minimal prime ideals of M. For this and other

basic properties of associated prime ideals we refer to Matsumura [Mat86].
Recall that an ideal I in a Noetherian ring R is P-primary, if Ass(R/I) =

{P}. In an abuse of notation, one often writes Ass(/) instead of Ass(R/I).

Proposition 1.3.7. The irreducible ideal (7', ... ,x{*) is (xiy, ..., x4 )-pri-
mary.
Proof. Let Q = (f!,...,2{") and P = (2,,...,%;,). Since P is a minimal

prime ideal of @, it follows that P € Ass(Q).

Notice that P™ C @ for m = Zle a;. Therefore P is the only minimal
prime ideal containing Q. Hence if P’ is an associated prime ideal of @, then
PcCP.

We have P’ = @Q : (g) for some polynomial g. Suppose P’ # P. Then
P’ contains a polynomial f with the property that none of the elements u €
supp(f) is divisible by the variables x;,. Therefore f is regular on S/Q. Since
fg € Q, we conclude that g € @ and so @ : (g) = S, a contradiction. O

A presentation of an ideal I as intersection I = (1);_; Q; where each Q; is a
primary ideal is called a primary decomposition of I. Let {P;} = Ass(Q;).
The primary decomposition is called irredundant primary decomposition
if none of the @; can be omitted in this intersection and if P; # P; for all ¢ # j.
If I =();_, Q; is an irredundant primary decomposition of I, then the Q; is
called the P;-primary components of I, and one has Ass(I) = {Py,..., P.}.
Only the primary components belonging to the minimal prime ideals of I are
uniquely determined. Indeed, if P € Ass(I) is a minimal prime ideal of I, then
the P-primary component of I is the kernel of the natural ring homomorphism
R — (R/I)p, see [Kun08].

Proposition 1.3.7 implies that the decomposition of an ideal into irreducible
ideals is a primary decomposition. But of course it may not be irredundant.
However, since an intersection of P-primary ideals is again P-primary we
may construct an irredundant primary decomposition of a monomial ideal T
from a presentation I = ();_, Q; as given in Theorem 1.3.1 by letting the
P-primary component of I be the intersection of all Q; with Ass(Q;) = {P}.
The following example illustrates this.

Example 1.3.8. The ideal I = (23, 23, 2323, x17223, 232%) has the irredundant
presentation as intersection of irreducible ideals

I= (xim%,x%) N (‘x%vx?) N (xlﬂxg)'

We have Ass(z?,22) = Ass(z1,23) = {(x1,72)}. Intersecting (z%,x2) and
(21,73) we obtain the (z1,2s)-primary ideal (2%, 2122, 23) and hence the ir-
redundant primary decomposition

I= (xi’,x%,x%) N (IE%,Ill‘Q,Z'%).
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Even though a primary decomposition of a monomial ideal I may not be
unique, the primary decomposition, obtained from an irredundant intersection
of irreducible ideals as described above, is unique. We call it the standard
primary decomposition of I.

From the standard primary decomposition we deduce immediately

Corollary 1.3.9. The associated prime ideals of a monomial ideal are mono-
mial prime ideals.

Corollary 1.3.10. Let I C S be a monomial ideal, and let P € Ass(I). Then
there exists a monomial v such that P = 1I: v.

Proof. Since P € Ass(I), there exists f € S such that P = I: f. Thus for each
x; € P we have that x;f € I. Since I is a monomial ideal, this implies that
ziu € I for all u € supp(f). It follows that P = I: f C (), cqupp(s) I+ u- On the
other hand, if g € (,cqupp(s) L 4, then ug € I for all u € supp(f), and hence
gf € I: f = P. Consequently, P = ﬂuesupp )I :u. Since P is irreducible, it

follows that P = I:u for some u € supp(f). |

1.4 Integral closure of ideals

1.4.1 Integral closure of monomial ideals

We introduce normal and normally torsionfree ideals. These concepts will be
use in Chapter 10.

Definition 1.4.1. Let R be a ring and I an ideal in R. An element f € R is
integral over I, if there exists an equation

v ff v e f+e =0 with ¢ el (1.1)

The set of elements I in R which are integral over I is the integral closure
of I. The ideal I is integrally closed, if I = I, and I is normal if all powers
of I are integrally closed.

Equation (1.1) is called an equation of integral dependence of f over I.

The integral closure of an ideal is again an ideal [SH06, Corollary 1.3.1].
For a monomial ideal it can be described as follows.

Theorem 1.4.2. Let I C S be a monomial ideal. Then I is a monomial ideal

generated by all monomials u € S for which there exists an integer k such that
k k

u® e I”.
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Proof. We first show that if J is monomial ideal and v € .J is monomial, then
there exists an integer k such that v* € J*. Indeed, let u™ + c;u™ ' 4 -+ +
Cm—1U + ¢ = 0 be an equation of integral dependence of u over J, and let
a; € K be the coefficient of v’ in the polynomial ¢;. Then u™ +a,u™ + asu™ +
-+« 4+ apu™ = 0. This is only possible if some a; # 0. It then follows that
u¥ € supp(cy). Since ¢, € J* and J* is a monomial ideal, Corollary 1.1.3
implies that u* € J*.

In order to prove that I is a monomial ideal, we first extend the base field
K by a transcendental element ¢ to obtain the field L = K(t), and prove
in a first step that IT is a monomial ideal, where T = L[xz1,...,x,]. Let
f € IT. By Corollary 1.1.3 it is enough to show that supp(f) C IT, and
we show this by induction on the cardinality of supp(f). The assertion is
trivial if | supp(f)| = 1. Now suppose that the support of f consists of more
than one monomial. Let u = x® be the lexicographical smallest monomial
in f; see Subsection 2.1.2. Then, according to Lemma 3.1.1, there exists an
integer vector w = (wy,...,wy) € Z7 such that 7" | biw; > D7 | a;w; for all
zlfl -~z in the support of f which are different from w.

Let o: T — T be the automorphism with ¢(z;) = t¥ix; for i = 1,...,n.
Then ¢(IT) = IT, since IT is a monomial ideal, and ¢(f) is integral over
©(IT) = IT. Hence the polynomial g = t~p(f) with ¢ = 3" | aw; is integral
over IT as well, and so is the polynomial h = f — g. By the choice of w and
the integer ¢ we get supp(h) = supp(f) \ {uv}. Hence our induction hypothesis
implies that supp(f) \ {u} C IT. Since a nonzero scalar multiple of u can
be obtained by subtracting from f a linear combination of the monomials
v € supp(f) \ {u} (which all belong to IT), it follows that u € IT, too.

Now in order to see that I is a monomial ideal, let f € I. Then f € IT
and so u € IT for all u € supp(f), since IT is a monomial ideal. But then,
as we have seen, for each u € supp(f) there exists an integer k such that
uk € (IT)*. Thus, since G(IT) = G(I), Proposition 1.1.5 yields that u* is a
product of k monomials in I. This implies that u € I, and yields the desired
result. O

Let I C S be a monomial ideal. The convex hull C(I) of the set of lattice
points {a: x* € I} in R™ is called the Newton polyhedron of I.

Corollary 1.4.3. Let I C S be a monomial ideal. Then I is generated by the
monomials x* with a € C(I).

Proof. By Theorem 1.4.2, x® € I if and only if there exists an integer k > 0
such that (x2)* € I*. Tt follows from Proposition 1.1.5 that this is the case if
and only if there exist x21,...,x® € [ such that (x®)¥ = x®! ...x® This is
equivalent to saying that

a=(1/k)(a; + - +ay). (1.2)

If equation (1.2) holds, then a € C(I). Conversely, if a € C(I), then there exist
bi,...,b,, with xP: € I, and there exist ¢; € Q such that a = g;b;y +--- +
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qmbm and 2211 ¢; = 1. We write ¢; = k; /k as fraction of nonnegative integers.
Then a = (1/k)(kib1 + - -+ + kmbyy,). Since Y0 | k; = k, this presentation of
a has the desired form (1.2). O

1.4.2 Normally torsionfree squarefree monomial ideals

Let R be a Noetherian ring and I C R an ideal. We define the kth symbolic
power 1) of T as the intersection of those primary components of I*¥ which
belong to the minimal prime ideals of I. In other words,

1™ =" Ker(R— (R/T")p).
PeMin(I)

Proposition 1.4.4. Let I C S be a squarefree monomial ideal. Then

™= P

PeMin(T)

Proof. Because of Corollary 1.3.6 we have ISp = PSp for P € Min(I). It
follows that I*Sp = P*Sp. Thus it is clear that P* C Ker(S — (S/I*)p).

Conversely, if f € Ker(S — (S/I¥)p), then there exist g € I* and h € S\ P
such that f/1 = g/h. Therefore, fh = g.

The prime ideal P is a monomial prime ideal. Each element r € S has
a unique presentation r = ) r;, where for each x* € supp(r;) one has
> o,ep @i = i- For r,s € S we have (rs); = > j=07jsi—j- The conditions
on h and g imply that hg # 0 and that g; = 0 for ¢ < k. Thus the equation
fh = g yields f; = 0 for i < k, which implies that f € P*. O

Definition 1.4.5. An ideal I C R is called normally torsionfree if
Ass(I¥) € Ass(I)
for all k.

Theorem 1.4.6. Let I C S be a squarefree monomial ideal. Then the follow-
ing conditions are equivalent:

(a) I is normally torsionfree;
() I%) = I* for all k.

If the equivalent conditions hold, then I is a normal ideal.

Proof. Let I* =N PeAss(I®) Q(P) be an irredundant primary decomposition
of I*. Then I®) = ¥ if and only if Mpepe(rr) QP) = Npeminr) Q(P),
and this is the case if and only if Ass(I*) = Min(/*) = Min(I) = Ass(I). The
last equation is a consequence of Corollary 1.3.6. This proves the equivalence
of (a) and (b).
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In order to prove that I is a normal ideal we have to show that for each k,
the ideal I* is integrally closed. Thus for a monomial u € S for which u¢ € I*¢
for some integer ¢ > 0, we need to show that u € I*; see Theorem 1.4.2. Since
by assumption I/ = IU) for all j, and since I() = ﬂPeM (I) P7 according to

Proposition 1.4.4, it amounts to proving that whenever u € ﬂPeMm(I) Pkt
for some integer ¢ > 0, then u € ﬂPeMin(I) P*. But this is easily seen, because
if u=a"- 2% then uf = z§**- .. 2. To say that u’ € Npemin(n) Pk s
equivalent to saying that a;£ > k¢ for all 7 for which x; € P and all P € Min(I

)
This then implies that a; > k for all ¢ for which x; € P and all P € Min(I),
which yields the desired conclusion. O

1.5 Squarefree monomial ideals and simplicial complexes

The purpose of the present section is to summarize the combinatorics on
squarefree monomial ideals.

1.5.1 Simplicial complexes

Let [n] = {1,...,n} be the vertex set and A a simplicial complex on [n].
Thus A is a collection of subsets of [n] such that if F € A and F' C F, then
F' € A. Often it is also required that {i} € A for all i € [n]; however, we will
not assume this condition.

Each element F' € A is called a face of A. The dimension of a face F is
|F| — 1. Let d = max{|F| : ' € A} and define the dimension of A to be
dim A =d—1. An edge of A is a face of dimension 1. A vertex of A is a face
of dimension 0. A facet is a maximal face of A (with respect to inclusion). Let
F(A) denote the set of facets of A. It is clear that F(A) determines A. When
F(A)={F1,...,Fy}, we write A = (F},..., F,). More generally, if we have
a set {Gy,...,Gs} of faces of A, we denote by (Gy,...,Gs) the subcomplex
of A consisting of those faces of A which are contained in some G;.

We say that a simplicial complex is pure if all facets have the same car-
dinality. A nonface of A is a subset F of [n] with F' & A. Let N(A) denote
the set of minimal nonfaces of A.

Let f; = fi(A) denote the number of faces of A of dimension 4. Thus in par-
ticular fo = n, if {i} € Aforalli € [n]. The sequence f(A) = (fo, f1,-.-, fa—1)
is called the f-vector of A. Letting f_; = 1, we define the h-vector
h(A) = (ho, h1,...,hq) of A by the formula

E:ﬂ Lt —1)¢ }:htdl

To visualize a simplicial complex we often use its geometric realization.
For example, Figure 1.1 represents the simplicial complex A of dimension 2
on the vertex set [5] with
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.7:(A) = {{1,2,4}, {1,2,5}, {2,3}, {3,4}}
and with

N(A) ={{1,3},{3,5},{4,5},{2,3,4}}.
One has f(A) = (5,7,2) and h(A) = (1,2,0,—1).

4 3

Fig. 1.1. The geometric realization of A

Let A be a simplicial complex on [n] of dimension d — 1. For each 0 < i <
d — 1 the ith skeleton of A is the simplicial complex A®) on [n] whose faces
are those faces F' of A with |F| < i+ 1. We say that a simplicial complex A is
connected if there exists a sequence of facets F' = Fy, F1,...,Fy_1,F; =G
such that F; N F;y1 # 0. Observe that A is connected if and only if AW g
connected.

1.5.2 Stanley—Reisner ideals and facet ideals

Let, as before, S = K[z1,...,x,] be the polynomial ring in n variables over
a field K and A a simplicial complex on [n]. For each subset F' C [n] we set

Xp = H Z;.
iEF

The Stanley—Reisner ideal of A is the ideal I of S which is generated
by those squarefree monomials xp with F' € A. In other words,

In = (xp: F € N(A)).

The facet ideal of A is the ideal I(A) of S which is generated by those
squarefree monomials xp with F' € F(A). Thus if A = (F1,..., F,,), then

I(A) = (Xpl,...,XFm).

Proposition 1.5.1. The set of all monomials z{* - - -z of S with {i € [n] :
a; #0} € A is a K-basis of S/Ia.

Proof. Let w = a7 +-- 2% be a monomial of S. If {i € [n] : a; # 0} € A
then by definition /u € Ia. Thus u € Ia. On the other hand, if u € I,
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then \/u € I, since I is a radical ideal; see Corollary 1.2.5. Thus a subset
F of {i € [n] : a; # 0} is a nonface of A. Since A is a simplicial complex,
the set {¢ € [n] : a; # 0} cannot be a face of A. Thus we have shown that
it xin  Ta if and only if {i € [n] : a; # 0} € A. Hence the assertion
follows from Corollary 1.1.4 O

1.5.3 The Alexander dual
Given a simplicial complex A on [n], we define AV by
AV ={[n]\F: F ¢ A}.
Lemma 1.5.2. The collection of sets AV is a simplicial complex and
(AV)Y = A.

Proof. Let F € AV and F' C F. Then [n]\ F ¢ A. Since [n]\ F C [n] \ F’, it
follows that [n] \ F’ ¢ A. Thus F’ € AY. This shows that A is a simplicial
complex. It is obvious that (AY)Y = A. O

The simplicial complex AV is called the Alexander dual of A.
Note that
F(AY) ={[n]\ F: F e N(A)}.

For each subset F' C [n] we set F' = [n] \ F and let
A= (F:F e F(A).

Lemma 1.5.3. One has

Iav = I(A).

Proof. A squarefree monomial xp belongs to G(Iav) if and only if F is a
minimal nonface of AV. In other words, F is a nonface of AV and all proper
subsets of F are faces of AY. This is equivalent to saying that F is a face of
A and no subset of [n] which properly contains F is a face of A. This is the
case if and only if F is a facet of A. Hence Iav = I(A), as desired. O

For each subset F' C [n] we set
Pp:(xi:iEF).

Lemma 1.5.4. The standard primary decomposition of I is

Ian= () Pp
FeF(A)
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Proof. Let uw = ' ---x%" be a monomial of S and F}, = {i € [n] : a; # 0}. If
u € I, then by Proposition 1.5.1, F,, € A. Thus no facet of A contains F,.
Hence F, N (F) # ( for all facets F' of A. Thus u € Nrera) Pr-

On the other hand, if u € I, then again by Proposition 1.5.1, F,, € A.
Hence there is a facet F' of A with F,, C F. Then u ¢ Pp. Hence u ¢

Nrera) Pr O

Lemma 1.5.3 and Lemma 1.5.4 supply us with an effective method to
compute G(Iav).

Corollary 1.5.5. Let In = Pp, N---N Pg,, be the standard primary decom-
position of Ia, where each F; C [n]. Then G(Iav) ={zp,,...,zF, }.

Example 1.5.6. Let A be the simplicial complex of Figure 1.1. Since
I = (x3,24) N (23,25) N (21, T4, 25) N (21, T2, T5),
the ideal Iav is generated by x3x4, T3x5, 12475 and T1T2T5.

Let I C S be an arbitrary squarefree monomial ideal. Then there is a
unique simplicial complex A such that I = I 4. For simplicity, we often write
IV to denote the ideal Tav.

1.6 Polarization

Polarization is a process, in fact a deformation, that assigns to an arbitrary
monomial ideal a squarefree monomial ideal in a new set of variables. The
construction of the polarization is based on the following

Lemma 1.6.1. Let I C S = K|z, ...,z,] be a monomial ideal with G(I) =
{u1, ..., um} whereu; = H?Zl x?” fori=1,...,m. Fiz an integer j € [n] and
suppose that a;; > 1 for at least one i € [m]. Let T = S[y| be the polynomial
ring over S in the variable y and let J C T be the monomial ideal with
G(J) = {v1,...,um} where v; = u; if a;; = 0, and v; = (u;/z;)y if a;; > 1.
Then y — x; a nonzero divisor modulo J and (T/J)/(y — z;)(T/J) = S/I.

Proof. Suppose y — x; is a zero divisor modulo J. Then y — z; € P for some
P € Ass(J). Since by Corollary 1.3.9, P is a monomial prime ideal, it follows
that y,z; € P. Hence there exists w € S\ J such that yw,z;w € J. Since J
is a monomial ideal, we may assume that w is a monomial. Then there exist
vk, ve € G(J) and monomials wy, ws such that yw = wivg and z;w = wovy.
Since w ¢ J it follows that x; divides v, and this implies that y divides
vg. Consequently, y divides w. The variable y does not divide w; since w & J.
Therefore, the equation yw = w; vy, implies that y? divides vy, a contradiction.
O
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Repeated application of Lemma 1.6.1 leads to the following construction:
let I C S = Klzi,...,2,] be a monomial ideal with G(I) = {u1,...,un}

T % L : R s
where u; = [[;_, z;" for i = 1,...,m. For each j let a; = max{a;;: i =
1,...,m} and let T be the polynomial ring over K in the variables

x117x12"‘71"1(1171:2171.22~"7x2a27"'7'rn17xn27"'7xnan'

Let J C T be the squarefree monomial ideal with G(J) = {v1,...,v,,} where

n Qij

'Ui:Hijk' for i=1,...,m.

j=1k=1

The monomial v; is called the polarization of u;, and the ideal J the polar-
ization of I. As an immediate consequence of Lemma 1.6.1 we now have

Proposition 1.6.2. Let I C S be a monomial ideal and J C T its polariza-
tion. Then the sequence z of linear forms

11— 2125+, L11 —Tlay, L21 —X22, -+ -, L21 —TL2a55--+sLnl —Tn2;---,Tnl — Tna,

is a T/J-sequence (i.e. a regular sequence on T/J), and one has the following
isomorphism of graded K -algebras

(T/7)/(2)(T/J) = S/1.

A monomial ideal I and its polarization J share many homological and
algebraic properties. Thus, by polarization, many questions concerning mono-
mial ideals can be reduced to squarefree monomial ideals. Most important is
that the graded Betti numbers of I and J are the same. For unexplained con-
cepts and notation we refer the reader to the appendices and to later chapters.

Corollary 1.6.3. Let I C S be a monomial ideal and J C T its polarization.
Then

(a) Bij(I) = Bij(J) for alli and j;

(b) Hgyr(t) = (1 —t)°Hr/;(t) where § = dimT — dim S;

(c) height I = height J;

(d) projdim S/I = projdimT/J and reg S/I =regT/J;

(e) S/I is Cohen—Macaulay (resp. Gorenstein) if and only if T/J is Cohen—
Macaulay (resp. Gorenstein).

Proof. (a) Since z is a T'/J-sequence, Corollary A.3.5 and Theorem A.3.4
imply that
Tor} (T/(2),T/J) = Hi(2;T/J) = 0.

Hence if F is a graded minimal free T-resolution of T'/.J it follows that F/(z)F
is acyclic with
Ho(F/(2)F) = (T/J)/(2)(T/J) = S/1.
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It F; = @, T(—j)%), then Fi/(z)F; = @, S(—j)")). Thus F/(2)F is a
free S-resolution of S/I. Obviously, it is again a minimal resolution, which
then implies that §;;(I) = B;;(J).

(b) follows from Formula (6.3) in Subsection 6.1.3.

(c) is a consequence of (b) and the fact that the Hilbert function of a
module determines its dimension; see Theorem 6.1.3.

(d) is an immediate implication of (a).

(e) By the Auslander-Buchsbaum formula (see Corollary A.4.3) one has
projdim M + depth M = n for any finitely generated graded S-module M.
On the other hand, M is Cohen—Macaulay if and only of depth M = dim M.
Thus (a) and (c) together imply that S/I is Cohen-Macaulay if and only if
T/J is Cohen—Macaulay.

Since the Gorenstein property can be characterized by the fact (see A.6.6)
that the last non-vanishing Betti number of S/I resp. T/J is equal to 1, we
see that (a) implies the remaining assertion of (e) as well. O

Problems

1.1. Let I C S = K[z1,...,%,] be a monomial ideal.

(a) Show that dimg S/I < oo if and only if there exists an integer a € Z,
such that ¢ € I for all i.

(b) Given integers a; € Z4, compute dimg S/I for I = (z{*,...,x%").

rn

1.2. We use the standard notation [n] for the set {1,2,...,n}. Let F' C [n].
We denote by Pr C K[x1,...,2,] the monomial ideal generated by the vari-
ables z; with ¢ € F. Given an integer d € [n]|, compute the intersection
I =g, p|=q Pr; in other words, describe the elements of G(I).

1.3. Let d > 0 be an integer, and let I C K|x1,...,2,] be the monomial ideal
generated by all monomials z{'x5? -+ 2% with Y .  a; = d and a; < d for

all i. Compute the saturation I and the radical v/T of I.

1.4. The smallest integer k such that I : m* = I : m**! is called the satura-
tion number of I. What is the saturation number of I in Problem 1.37

1.5. Find an example of a monomial ideal I for which I2 # (2.

1.6. Show that the monomial ideal (2%, z;72) has infinitely many different
irredundant primary decompositions.

1.7. For n = 3, find the standard primary decomposition of the ideals de-
scribed in Problem 1.3.

1.8. Let P = (x1,...,z,) C S = K[z1,...,2,]. Show that a monomial ideal
Q@ is P-primary if and only if there exists a monomial ideal Q' C T =
Klx1,...,z,] such that dimg T/Q" < co and Q = Q'S.
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1.9. Compute the integral closure of the monomial ideal (z3,4%) C K|z, y].

1.10. Show that the ideal (zy, zz,yz) C K|[z,y, 2] is not normally torsionfree
but normal.

1.11. Let A be the simplicial complex on the vertex set [5] whose Stanley—
Reisner ideal is Ta = (2124, 2125, TaT5, T1T2T3, T3L42s5). Compute Tav.

1.12. Let uq,...,uy, be a (not necessarily minimal) system of generators of
the monomial ideal I. Let v; be the polarization of w; for i = 1,...,m, J
the polarization of I and J’ the ideal generated by wvi,...,v,. Show that
G(J)=G(J).

1.13. Let I1,Io C S be monomial ideals and let J; be the polarization of
I, Jy the polarization of I and J the polarization of I; N I,. Show that
G(J) = G(J1 N Jz). Prove a similar result for the sum of I; and I.

Notes

Monomial ideals are the bridge between commutative algebra and combina-
torics. Another reason for their importance is the fact that monomial ideals
appear as initial ideals of arbitrary ideals; see Chapter 2. Since many proper-
ties of an initial ideal are inherited by its original ideal, it is an often applied
strategy to study general ideals via their initial ideal, thereby reducing a given
question concerning an ideal to that of a monomial ideal.

The systematic study of squarefree monomial ideals began with the work of
Stanley [Sta75] and Reisner [Rei76]. In 1983 Stanley wrote his influential book
Combinatorics and Commutative Algebra, where he discussed the upper bound
conjecture for spheres by using algebraic properties of squarefree monomial
ideals.

Almost all topics explained here are already contained in several stan-
dard textbooks on combinatorics and commutative algebra, including Bruns—
Herzog [BH98|, Eisenbud [Eis95], Hibi [Hib92], Miller—Sturmfels [MS04], Stan-
ley [Sta95] and Villarreal [Vil01].

In the presentation of the integral closure of monomial ideals in Subsec-
tion 1.4.1 we follow closely the book of Swanson and Hunecke [SHO6]. Nor-
mally torsionfree squarefree monomial ideals are special classes of normal ide-
als. They also have the property that their symbolic powers coincide with the
ordinary powers. The relationship of this property with Mengerian simplicial
complexes is discussed in Chapter 10.

More recently the application of Alexander duality of simplicial complexes
has turned out to be a powerful technique in the study of algebraic and com-
binatorial properties of squarefree monomial ideals. This will be discussed in
Chapters 8 and 9.
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The technique of polarization which allows to pass from arbitrary mono-
mial ideals to squarefree monomial ideals was first used by Hartshorne in his
paper “Connectedness of the Hilbert scheme” [Har66]. It became a popular
tool in the study of monomial ideals after Hochster’s article “Cohen—Macaulay
rings, combinatorics and simplicial complexes”, which appeared in [Hoc77].
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A short introduction to Grobner bases

We summarize fundamental material on Grébner bases, including Dickson’s
lemma and Buchberger’s criterion and algorithm. Our presentation is a quick
and self-contained introduction to the theory.

2.1 Dickson’s lemma and Hilbert’s basis theorem

2.1.1 Dickson’s lemma

Let, as before, S = K[x1,...,2,] denote the polynomial ring in n variables
over a field K with each degz; = 1, and Mon(S) the set of monomials of S.
For monomials x® = z{'23? - --z% and x® = 2025 ... 2 of S, we say

that x? divides x? if each b; < a;. We write xP | x® if xP divides x2.

Let M be a nonempty subset of Mon(S). A monomial x* € M is said to
be a minimal element of M with respect to divisibility if whenever xP | x2
with xP € M, then xP = x2. Let M™™" denote the set of minimal elements

of M.

Theorem 2.1.1 (Dickson’s lemma). Let M be a nonempty subset of
Mon(S). Then M™™ is q finite set.

Proof. We prove Dickson’s lemma by using induction on n, the number of
variables of S = K{x1,22,...,2,]. Let n = 1. If d is the smallest integer for
which 2 € M, then M™® = {z¢}. Thus M™?" is a finite set.

Let n > 2 and B = K[x] = K[z1,22,...,2Zn—1]. We use the notation y
instead of z:,. Thus S = K|[z1, 22, ..., Zn_1,Yy]. Let M be a nonempty subset of
Mon(S). Write A for the subset of Mon(B) which consists of those monomials
x2, where a € Zi_l, such that x2y® € M for some b > 0. Our assumption
of induction says that N™" is a finite set. Let N™" = {uy, uy, ..., us}. By
the definition of A, for each 1 < i < s, there is b; > 0 with uiybi € M. Let
b = max{by, b, ...,bs}. Now, for each 0 < £ < b, define the subset N¢ of N/
to be

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 23
DOI 10.1007/978-0-85729-106-6_2, (©) Springer-Verlag London Limited 2011
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Ne = {x* e N : x> € M}
Again, our assumption of induction says that, for each 0 < £ < b, the set N¢

is finite. Let ./\/'5min = {u55)7 uég), e ,ugi)}. We now show that each monomial
belonging to M is divisible by one of the monomials in the following list:

min

ulybl ) u2yb27 .. 7usybsa
o0, D,
1 1 1
ug )y,ug )y, o ,ugl)y,
b—1) p_ b—1) p_ b—1) p_
ug )yb 1,ué )yb 1,~-~;Ugb_1)'yb 1

In fact, since for each monomial w = x®y? € M with x* € Mon(B) one has
x2 € N, it follows that if v > b, then w is divisible by one of the monomials
uy® ugy®?, ... ugys, and that if 0 < v < b, then w is divisible by one of

the monomials ug'Y)yV,ugY)y"Y7 . ,ugz)yv. Hence M™i" is a subset of the set
of monomials listed above. Thus M™" is finite, as desired. O

2.1.2 Monomial orders

Recall that a partial order on a set P is a relation < on P such that, for all
x,y,z € P one has

(i) = < x (reflexivity);
(ii) x <y and y < z = = = y (antisymmetry);
(ili) z <y and y < z = z < z (transitivity).

A total order on a set P is a partial order < on P such that, for any two
elements = and y belonging to P, one has either x <y or y < z.
A monomial order on S is a total order < on Mon(S) such that

(i) 1 <wfor all 1 # u € Mon(S);
(ii) if u,v € Mon(S) and u < v, then vw < vw for all w € Mon(S).

Ezample 2.1.2. (a) Let a = (a1,a2,...,a,) and b = (by,ba, ..., by,) be vectors
belonging to Z’ . We define the total order <jex on Mon(S) by setting x* <jex
xP if either (i) > i, a; < i by, or (ii) Y0, a; = Y i, b; and the leftmost
nonzero component of the vector a — b is negative. It follows that <jex is a
monomial order on S, which is called the lexicographic order on S induced
by the ordering 1 > x9 > -+ > x,.

(b) Let a = (a1,a2,...,a,) and b = (by,ba,...,b,) be vectors belonging
to Z't. We define the total order <, on Mon(S) by setting x* <iey xP if
either (i) Y0 a; < >0 b, or (i) Yi,a; = > ., b; and the rightmost
nonzero component of the vector a — b is positive. It follows that <,e, is a
monomial order on S, which is called the reverse lexicographic order on
S induced by the ordering x1 > xo > -+ > x,.
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(¢) Let a = (ay,as,...,a,) and b = (by,bs, ..., b,) be vectors belonging to
Z" . We define the total order <purelex 0n Mon(S) by setting x* <purelex xP if
the leftmost nonzero component of the vector a—b is negative. It follows that
<purelex 15 @ monomial order on S, which is called the pure lexicographic
order on S induced by the ordering x1 > x5 > -+ > x,. (Can we also define
the pure reverse lexicographic order?)

Let m = 4yi3---i, be a permutation of 1,2,...,n. How can we define
the lexicographic order (or the reverse lexicographic order) induced by the
ordering x;, > x;, > --- > x;, 7 The answer is easy. For a monomial v =

ai .02 a
x{twy? - -xpr of S, we set

T _ .b1,.b2 bn J
u" =ztzy? - owyr,  where by = ay;.

We then define the total order <[ (resp. <[, ) on Mon(S) by setting u <[, v

rev
if U™ <jex v™ (resp. uT <iey ™), where u,v € Mon(S). It follows that <[
(resp. <T.,) is a monomial order on S, which is called the lexicographic order
(resp. reverse lexicographic order) on S induced by the ordering z;, > x;, >
>y

Unless otherwise stated, we only consider monomial orders satisfying
r1 >Tg >+ > Ty

Ezample 2.1.3. Fix a vector w = (w1,wa,...,w,) € R™ with each w; > 0.
Given an arbitrary monomial order < on S, we introduce the total order <,
on Mon(S) by setting x* <, xP if either (i) Y., wi(a; — b;) is negative
or (i) Y7, wi(a; — b;) = 0 and x* < xP, where a = (a1,a2,...,a,) and
b = (b1,b2,...,b,). Then <, is a monomial order on S.

2.1.3 Grobner bases

We will work with a fixed monomial order < on S. Let f = ZueMon(S) Ay
be a nonzero polynomial of S with each a, € K. The initial monomial of
f with respect to < is the biggest monomial with respect to < among the
monomials belonging to supp(f). We write in<(f) for the initial monomial of
f with respect to <. The leading coefficient of f is the coefficient of in(f)

in f.

Lemma 2.1.4. Let u,v be monomials of S and f,g nonzero polynomials of
S. Then one has

(i) if u divides v, then u < v;
(il) inc (uf) = win<(f);
(ili) in< (fg) = in<(f) in<(g).
(iv) in<(f +6) < max{ing (f), in(g)} with equality if n<(f) # in<(g).
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Proof. (i) In fact, if u divides v and if v = vw with w € Mon(S), then since
1<wonehas 1 -u<w-u. Thus u < v, as desired.

(ii) Let w € supp(f) with w < inc(f), then vw < win<(f). Hence
in(uf) = uin(f),

(iii) Let w € supp(f) with w < in<(f) and w’ € supp(g) with v’ < in<(g).

Then ww' < win<(g) < in<(f)in<(g). Hence in<(fg) = in<(f) in<(g).
(iv) is obvious. O

Let I C S be a monomial ideal. It follows that [ is generated by a subset
N C Mon(S) if and only if (I N Mon(S))™" c N. Hence (I N Mon(S))™" is
a unique minimal system of monomial generators of I (see also Proposition
1.1.6). Dickson’s Lemma guarantees that (I N Mon(S))™" is a finite set. Thus
in particular every monomial ideal I of S is finitely generated.

Let I be a nonzero ideal of S. The initial ideal of I with respect to <
is the monomial ideal of S which is generated by {in<(f) : 0# f € I }. We
write in () for the initial ideal of I. Thus

inc(I) = ({in<(f):0# f € I}).

Since (in< (1) N Mon(S))™" is the minimal system of monomial generators of
inc(I) and since (in<(I) N Mon(S)) = {in<(f):0 # f € I}), there exist a
finite number of nonzero polynomials g1, gs, ..., gs belonging to I such that
in<(I) is generated by their initial monomials in<(g1), in<(g2), ..., in<(gs).

Definition 2.1.5. Let I be a nonzero ideal of S. A finite set of nonzero poly-
nomials {g1, ga, - .., gs} with each g; € I is said to be a Grébner basis of I
with respect to < if the initial ideal in< (I) of I is generated by the monomials

in<(gl)a il’l<(92), s 7in<(gs)'

A Grobner basis of I with respect to < exists. If G is a Grobner basis of
with respect to <, then every finite set G’ with G C G’ C I is also a Grobner
basis of T with respect to <. If G = {g1,...,gs} is a Grobner basis of I with
respect to < and if fq,..., fs are nonzero polynomials belonging to I with
each in<(f;) =in<(g;), then {f1,..., fs} is a Grobner basis of I with respect
to <.

Ezample 2.1.6. (a) Let S = K[z1,x2,...,27] and <jex the lexicographic order
on S induced by 1 > 19 > -+ > x7. Let f = x124— 2073 and g = z4207 —T5%4
with their initial monomials in,_ (f) = 124 and inc,_ (g) = @zax7. Let I =
(f,g). Then {f,g} is not a Grobner basis of I with respect to <jex. In fact,
the polynomial h = x7f — 19 = x1257¢ — 2327 belongs to I, but its initial
monomial ing,__ (h) = z1252¢ can be divided by neither in., _(f) norin<,_ (g).
Hence in<lex (h) g (in<lex (f)v in<lex (g)) Thus in<lex (I) 7£ (in<lex (f)a in<lex (g))
In other words, {f, g} is not a Grébner basis of I with respect to <jex. It will
be shown in Example 2.3.6 that {f, g, h} is a Grobner basis of I with respect
t0 <iex-



2.1 Dickson’s lemma and Hilbert’s basis theorem 27

(b) Let S = Klx1, 22, ...,27] and <;ev the reverse lexicographic order on
S induced by x1 > x9 > -+ > x7. Let f = xox3 — x124 and g = z4x7 — T5T6-
Later by using Corollary 2.3.4 it turns out that {f, g} is a Grobner basis of
I = (f,g) with respect to <;ey.

Lemma 2.1.7. Let < be a monomial order on S = Klx1,...,2,]. Then, for
any monomial u of S, there is no infinite descending sequence of the form

< ug < up < Ug = U (2.1)

Proof. Suppose, on the contrary, that one has an infinite descending sequence
(2.1) and write M for the set of monomials {ug,uy,us,...}. It follows from

Dickson’s Lemma that M™® is a finite set, say M™® = {u; ,u;,,...,u;,}
with 41 < g < .-+ < is. Then the monomial u; 11 is divided by u;; for some
1<j <s. Thus u;; < w11, which contradicts i; < s + 1. O

2.1.4 Hilbert’s basis theorem

Theorem 2.1.8. Let I be a nonzero ideal of S = Klz1,...,2,] and G =
{91,---,9s} a Grobner basis of I with respect to a monomial order < on S.
Then I = (g1,...,9s). In other words, every Grobner basis of I is a system
of generators of I.

Proof. (Gordan) Let 0 # f € I. Since in<(f) € in<(I), it follows that there
is g4, such that inc(g;,) divides in<(f). Let in<(f) = woin<(g;,) with wg €
Mon(S). Let hg = f—c[olcowogio, where ¢ is the coefficient of in(f) in f and
where ¢;, is the coefficient of in<(g;,) in g;,. Then hg € I. Since in< (wog;,) =
wo in<(gs,) it follows that in (ho) < inc(f). If hg = 0, then f € (g1,...,7s).

Let hg # 0. Then the same technique as we used for f can be applied
for hg. Thus hy = f — calclwlgil — ci_olcowogio, where ¢ is the coefficient of
in<(ho) in hg and where ¢;, is the coefficient of in<(g;,) in g;,. Then hy € I
and inc< (k1) < in<(hg). If hy =0, then f € (g1,...,9s)-

If hy # 0, then we proceed as before. Lemma 2.1.7 guarantees that
this procedure must terminate. Thus we obtain an expression of the form
f = Zévzo ci_qlcqwqgl-q. In particular, f belongs to (¢1,92,-..,9s). Thus
I=1(91,92,...,9s), as desired. m|

Corollary 2.1.9 (Hilbert’s basis theorem). Fuvery ideal of the polynomial
ring is finitely generated.

It is natural to ask if the converse of Theorem 2.1.8 is true or false. That is
to say, if I = (f1, fa,..., fs) is an ideal of S = K|[z1,...,z,], then does there
exist a monomial order < on S such that {f1, f2,..., fs} is a Grobner basis
of I with respect to < 7

Ezample 2.1.10. Let S = K[x1,xa,...,210] and I the ideal of S generated by
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fi =@axs —wows,  fo=womg —x3T7,  f3 = T3T10 — TaTs,
fa= 2476 — 7579, f5 = x5207 — 21210
We claim that there exists no monomial order < on S such that {f1,..., f5}

is a Grobner basis of I with respect to <.

Suppose, on the contrary, that there exists a monomial order < on S such
that G = {fi1,..., fs} is a Grobner basis of I with respect to <. First, note
that each of the five polynomials

T1T8L9 — X3XL6L7, L2L9L10 — L4XL 7Ly, L2XLeL10 — L5L7LS,
T3TeX10 — T5T8T9, T1TL9T10 — LT4LeL7

belongs to I. Let, say, x1xsx9 > T3xgx7. Since r1xgxg € in(I), thereis g € G
such that in.(g) divides z1xsxg. Such g € G must be f;. Hence 128 > x226.
Thus z226 ¢ inc(I). Hence there exists no g € G such that in.(g) divides
ToXgT1g. Hence roxgrig < Tsx7rg. Thus zsry > x1210. Continuing these
arguments yields

T1T8T9 > T3TeL7, L2X9T10 > T4T7TT8, L2TeT10 < T5L7L,
T3TeT10 > T5T8L9, T1T9T10 < T4TL6XT

and

T1Tg > TaZe, T2X9 > T3T7, T3T10 > T4T8,
T4Tg > TsTg, TsT7 > T1X10-

Hence

(1131’158) (:172’159) (IZ?33310)(.’E4I6)(.’E5I7) > (IQ(Z’G)(51331’7)(51341’8)({1?51’9)({1?11’10).

However, both sides of the above inequality coincide with xxs - - - z19. This
is a contradiction.

2.2 The division algorithm

2.2.1 The division algorithm

The division algorithm generalizes the following well-known result in high
school algebra: given polynomials f and g # 0 in one variable z, there exist
unique polynomials ¢ and r such that f = gq + r, where either r = 0 or
degr < degg.

Theorem 2.2.1 (The division algorithm). Let S = K|z1,...,x,] denote
the polynomial ring in n variables over a field K and fix a monomial order <

on S. Let g1, 92, - .., gs be nonzero polynomials of S. Then, given a polynomial
0# f €S, there exist polynomials f1, fa,..., fs and f' of S with

f=log+ fage+-+ fsgs + [, (2.2)

such that the following conditions are satisfied:



2.2 The division algorithm 29

(i) if f # 0 and if uw € supp(f’), then none of the initial monomials
inc(g1),in<(ga),...,inc(gs) divides u, i.e. no monomial u € supp(f’)
belongs to (in< (gl)a in< (92)7 s ,iIl< (gs)),

(ii) if f; # 0, then

inc(f) = in<(figi)-

The right-hand side of equation (2.2) is said to be a standard expression
for f with respect to g1,92,...,9s, and the polynomial f’ is said to be a
remainder of f with respect to g1, g2,...,¢gs. One also says that f reduces
to f/ with respect g1,...,gs.

Proof (of Theorem 2.2.1). Let I = (in<(g1), - ..,in<(gs)). If none of the mono-
mials u € supp(f) belongs to I, then the desired expression can be obtained
by setting f/ = fand fi =---= f, =0.

Now, suppose that a monomial u € supp(f) belongs to I and write ug
for the monomial which is biggest with respect to < among the monomials
u € supp(f) belonging to I. Let, say, in<(g;,) divide ug and wg = ug/ in<(gs,)-
We rewrite

f= Cf)Cfolwogio + ha,

where ¢ is the coefficient of ug in f and ¢;, is that of in<(g;,) in g;,. One has

in< (wogiy) = wo in<(gs,) = uo < inc(f).

If either hy = 0 or, in case of h; # 0, none of the monomials u € supp(hq)
belongs to I, then f = cgci;lwogio + hy is a standard expression of f with
respect to g1, 99,...,9s and hp is a remainder of f.

If a monomial of supp(hy) belongs to I and if uy is the monomial which
is biggest with respect to < among the monomials u € supp(hy) belonging to
I, then one has

Ug > Uj.

In fact, if a monomial u with v > wug(= in<(wog;,)) belongs to supp(hy),
then u must belong to supp(f). This is impossible. Moreover, ug itself cannot
belong to supp(hy).

Let, say, in<(g;,) divide w1 and w1 = u1/in<(g;, ). Again, we rewrite

/-1 . /-1
f= CoC4y WoYito + C1C; W14, + Do,

where ¢} is the coefficient of w; in h; and ¢;, is that of in<(g;,) in g;,. One
has

inc(wig:,) < inc(wogi,) < in<(f).
Continuing these procedures yields the descending sequence

Uy > Uy > Ug > vt

Lemma 2.1.7 thus guarantees that these procedures will stop after a finite
number of steps, say N steps, and we obtain an expression
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-1
—1

_ /
f= CeCi,
q:

WqYi, + hN»

where either hy = 0 or, in case hy # 0, none of the monomials u € supp(hy)
belongs to I, and where

inc(weg:,) < -+ <inc(wogi,) < inc(f).
Thus, by letting > 7_, figi = Zé\gl c;c;qlwqgiq and f’ = hy, we obtain an
expression f = Y°_, f;g;+ f’ satisfying the conditions (i) and (ii), as desired.
O

Ezample 2.2.2. Let <jex denote the lexicographic order on S = KJz,y, 2] in-
duced by z >y > 2. Let gy =22 — 2,90 =2y — 1 and f = 23 — 2%y — 22 — 1.
Each of

f=2"—aPy—a® —1=a(g+2) —2’y—a2’—1
:xgl—xzy—$2+x2—1:$91—(91+2)y—x2+xz—1
=ag1 —yg — 2’ +rz—yz— 1 =g —yg — (1 +2) + 2z —yz — 1

=@-—y-Da+@z—yz—2-1)
and

f:373—:U2y—x2—1:x(gl+z)—w2y—x2—1
=ag —a’y -2’ +az—1=xg —x(ga+ 1) —2® + 221
=ag1 —ago — 2 faz—x—1=xg1 —xg> — (1 +2) + 2z —x—1

=(x—-1g —xga+(xz—x—2-1)

is a standard expression of f with respect to g1 and g2, and each of xz —yz —
z—1and 2z —x — z — 1 is a remainder of f.

Until the end of the present section, we work with a fixed monomial order
<on S = Klxy,...,x,]. Example 2.2.2 says that in the division algorithm a
remainder of f is, in general, not unique. However,

Lemma 2.2.3. If G = {g1,...,9s} is a Grobner basis of I = (g1,--.,9s),
then for any nonzero polynomial f of S, there is a unique remainder of f with
respect 10 g1,...,0s.

Proof. Suppose there exist remainders f’ and f” with respect to g1,...,9s
with f/ # f”. Since 0 # f' — f” € I, the initial monomial w = in.(f" — )
must belong to in. (). However, since w € supp(f’) U supp(f”), it follows
that none of the monomials in<(g1),...,in<(gs) divides w. Hence in.(I) #
(in<(g1),...,in<(gs)): a contradiction. O
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Corollary 2.2.4. If G = {g1,...,9s} is a Grébner basis of I = (g1,...,9s),
then a monzero polynomial f of S belongs to I if and only if the unique re-
mainder of f with respect to g1,...,9s s 0.

Proof. First, in general, if a remainder of a nonzero polynomial f of S with
respect to g1, 92, ..., gs is 0, then f belongs to I = (g1,92,-..,9s).

Second, suppose that a nonzero polynomial f belongs to I and f = fi1g1 +
fa92+- -+ fsgs+ [ is a standard expression of f with respect to ¢1,92,. ., 9s-
Since f € I, one has f' € I. If f' # 0, then in.(f’) € in(I). Since G is a
Grobner basis of I, it follows that inc(I) = (in<(g1),in<(g2),...,in<(gs)).
However, since f’ is a remainder, none of the monomials u € supp(f’) can
belong to (in<(g1),in<(g2),...,in<(gs))- 0

We conclude this subsection with the presentation of important properties
of initial ideals.

Proposition 2.2.5. Let I be a nonzero ideal of S = K[x1,...,2,], and < a
monomial order on S. Then

(a) the set of monomials which do not belong to in(I) form a K -basis of S/I.
(b) dimg I; = dimg inc (I); for all §, if in addition, I C S is a graded ideal.

Proof. (a) Let g1,...,9m be a Grobner basis of I, let f € S and f’ the
remainder of f with respect to gi,...,gm. Then f+1 = f'+1I and supp(f')N
in. (I) = (. This shows that S/I is generated by the monomials u € S\in. (7).
Suppose there exist monomials u; > ug > ... > u, in S\ ins (I) which are
linearly dependent modulo I. Say, f = >_!_, a;u; € I for some a; € K. We
may assume a; # 0. Then in.(f) € I, a contradiction.

(b) It follows from (a) that the monomials of degree j in S\ in. () form a
K-basis of (S/I);. Since they also form a K-basis of (S/in<(I)); it follows that
dimg S; —dimg I; = dimg S; —in<(I);, and hence dimg I; = dimg in (I);.

O

Proposition 2.2.6. Let I C J be nonzero ideals of S = K|x1,...,x,]| with
I#J, and let < and <’ be monomial orders on S. Then

(a) inc(I) Cinc(J) and inc(I) # inc(J).
(b) inc (1) = ines (1), if inc(I) C iner (I).

Proof. (a) in<(I) is generated by all monomials in.(f) with f € I. Since
I c J, each f € I belongs to J. Therefore inc(I) C inc(J). If T # J,
then there exists f € J\ I. Let f’ be the remainder of f with respect to a
Grobuer basis of I. Then [/ # 0, f' € J and supp(f’) ¢ inc(I). It follows
that in<(f') € in<(J) \ in<(I).

(b) By Proposition 2.2.5, the set of monomials in S\ in. (I) as well as the set of
monomials in S\in</ (I) form a K-basis of S/I. Suppose that in(I) C in<(I).
Then S\ in</(I) is a proper subset of S\ in<(I), a contradiction. O
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2.2.2 Reduced Grobner bases

A Grobner basis G = {g1,92,.-.,9s} is called reduced if the following con-
ditions are satisfied:

(i) The coefficient of in(g;) in g; is 1 for all 1 <i <'s;
(ii) If ¢ # j, then none of the monomials of supp(g;) is divisible by in<(g;).

Theorem 2.2.7. A reduced Grébner basis exists and is uniquely determined.

Proof. (Existence) Let I be a nonzero ideal of S and {uy,...,us} the unique
minimal system of monomial generators of in< (I). Thus, for ¢ # j, the mono-
mial u; cannot be divided by u;. For each 1 <14 < s, we choose a polynomial
gi € I with inc(g;) = u;.

Let g1 = fogo + f3gs + -+ fsgs + h1 be a standard expression of g; with
respect to g2, 93, ..., gs, where h; a remainder. It follows from the property
(ii) required in the division algorithm that in.(g;) coincides with one of the
monomials in<(f2)in<(g2), -+, in<(fs) in<(gs),in<(h1). Since uy = inc(g1)
can be divided by none of the monomials inc(gs),...,in<(gs), one has
inc(hy) = inc(g1). Hence {h1,9g2,93,...,9s} is a Grobner basis of I. Since
the monomial h; is a remainder of a standard expression of g; with respect to
92,93, - - -, gs, €ach monomial of supp(hq) is divided by none of the monomials
in< (92), in< (93)7 s 7in< (gs‘)

Similarly, if hs is a remainder of a standard expression of go with respect
to hi,93,94,-..,9s, then one has inc(hs) = in<(g2) and each monomial of
supp(hz) is divided by none of the monomials in<(hy),in<(gs),...,in<(gs).
Moreover, {hi,ha,g3,94,-..,9s} is a Grobner basis of I. Since inc(hy) =
in<(gz), each monomial of supp(h;) is divided by none of the monomials
in<(h2)a in< (93)3 s 7in< (gs)

Continuing these procedures yields the polynomials hg, hy, ..., hs we ob-
tain a Grébner basis {hy, ha,...,hs} which satisfies condition (ii). Dividing
h; by the coefficient of in. (h;) for all ¢, we obtain a reduced Grobner basis of
1.

(Uniqueness) Let {g1,...,9s} and {hq,...,h} be reduced Grébner bases
of I. Since {in<(g1),...,in<(gs)} and {in<(hy),...,inc(hs)} are the minimal
system of monomial generators of the initial ideal in. (I) of I, we may assume
that s = ¢ and inc(g;) = inc(h;) for all 1 < i < s(=t). If g; # h;, then
0+# gi—h; € I andinc(g; —h;) < in<(g;). In particular in.(g;) cannot divide
in<(g; — h;). Since the monomial in.(g; — h;) must appear in either supp(g;)
or supp(h;), it follows that in.(g; — h;) cannot be divided by inc(g;) with
j #i. Hence in<(g; — hi) € in<(I). This contradicts g; — h; € I. O

We write Greq(I; <) for the reduced Grobner basis of T with respect to <.

Corollary 2.2.8. Let I and J be nonzero ideals of S. Then I = J if and only
Zf gred(l; <) = gred(‘]; <)-



2.3 Buchberger’s criterion 33
2.3 Buchberger’s criterion

Let, as before, S = K[x1,...,x,]| denote the polynomial ring over a field K.
We work with a fixed monomial order < on S and will omit the phrase “with
respect to <7, if there is no danger of confusion.

2.3.1 S-polynomials

Given nonzero polynomials f and g of S. Recall that lem(in<(f),in<(g))
stands for the least common multiple of in<(f) and in<(g). Let ¢ denote the
coefficient of in. (f) in f and ¢, the coefficient of in<(g) in g. The polynomial

S(f, g) — lCHl(iIl<.(f),in< (g))f _ lcm(1n<(f),1n<(g))g
cpine(f) cginc(g)
is called the S-polynomial of f and g.
We say that f reduces to 0 with respect to ¢1,9s,...,¢s if, in the di-
vision algorithm, there is a standard expression (2.2) of f with respect to
91,92, .-, 9s with f/ =0.

Lemma 2.3.1. Let f and g be nonzero polynomials and suppose that in< (f)
and inc(g) are relatively prime, i.e. lem(ine(f),in<(g9)) = in<(f)in<(g).
Then S(f,g) reduces to O with respect to f,g.

Proof. To simplify notation we will assume that each of the coeflicients of
inc(f) in f and inc(g) in g is equal to 1. Let f = in(f) + f1 and g =
in<(g) + g1. Since in<(f) and in.(g) are relatively prime, it follows that

S(f,9) =inc(g)f —in<(f)g

=(@—9)f—=(f—H)g

=hg—alf
We claim (in<(f1) in<(9) =) in<(f1g9) # inc(g1f) (= inc(g1) in<(f)). In fact,
ifine(f1)in<(g) = in<(g1) in<(f), then, since in< (f) and in< (g) are relatively
prime, it follows that in.(f) must divide in<(f1). However, since in<(f1) <
inc(f), this is impossible. Let, say, in<(f1)in<(g9) < in<(g1)in<(f). Then
inc(S(f,9)) =inc(g1f) and S(f,g9) = f19 — g1.f turns out to be a standard
expression of S(f,g) in terms of f and g. Hence S(f, g) has remainder 0 with
respect to f,g. O

2.3.2 Buchberger’s criterion

We now come to the most important theorem in the theory of Grébner bases.

Theorem 2.3.2 (Buchberger’s criterion). Let I be a nonzero ideal of S
and G = {g1,...,9s} a system of generators of I. Then G is a Grobner basis
of I if and only if the following condition is satisfied:
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(%) For alli # j, S(gi,g;j) reduces to O with respect to g1,. .., gs.

Proof. “Only if”: Since S(gs,9;) € I, it follows from Corollary 2.2.4 that if
G = {g1,...,9s} is a Grébner basis of I, then S(g;, g;) reduces to 0 with
respect to g1,...,9s.

“If”: Let G = {g1, 92, ..., 9gs} be a system of generators of I which satisfies
the condition (x). If a nonzero polynomial f belongs to I, then we write H
for the set of sequences h = (hy, ho,...,hs) with each h; € S such that
f=23>"0_1 higi. We associate each sequence h € Hy with the monomial §, =
max{inc(h;g;) : hig; # 0}. Among such monomials dy, with h € H;, we are
interested in the monomial

5f = min{éh :he Hf}

One has in. (f) < d;. It then follows that G is a Grébner basis of I if in (f) =
0y for all nonzero polynomials f belonging to I. In fact, if in.(f) = d5 and
if 6 = 6n with h = (h1,ha, ..., hs) € Hy, then in.(f) = in<(h;g;) for some
1 <i<s. Hence in<(f) € (in<(g1),in<(g2), ... ,in<(gs)).

Our goal is to show that in.(f) = d for all nonzero polynomials f € I.
Suppose that there exists f € I with f # 0 such that in.(f) < 6 and choose
a sequence h = (hq, ho, ..., hs) € Hy with 65 = én. Then

f= > hg+ D>, hg

inc(hig;)=0s inc (higi)<dg

— Z ciine(hy)gi + Z (hi — ciin<(h;))gi

inc(hig;)=0y inc (higi)=0y

inc(higi)<dy
where ¢; is the coefficient of in (h;) in h;. Since in<(f) < dy, it follows that
ine( Z ¢iinc(hi)g;) < 05.
inc (higi)=dy

By virtue of Lemma 2.3.3 below, it turns out that Zin((higi):(;f ciine (h;)g;
is a linear combination of those S-polynomials S(in<(h;)g;,in<(hg)gr) with
inc(hjg;) = inc(hrgr) = 9. In case of in<(h;g;) = in<(hrgr) = d¢, one can
easily compute that

S(in<(hy)g;, in< (hi)gr) = (67/lem(in<(g;), in<(gx))S (9 gr)-

Let ujr = 05/lem(in<(g;),in<(gx)). It then follows that there exists an ex-
pression of the form

Z C; in< (hl)g, = chkuij(gj,gk), Cjk € K, (2.3)
inc(h;ygi)=0d5 j.k
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with
in<(ujrS(g5,91)) < 05.

By using the condition (x), there exists an expression of the form
S
ik ik
S(go6) =Y _plFgi,  pl* €S,
i=1

with '
ine (p]"g;) < in<(S(g5, 91))-
Combining the equalities (2.4) with (2.3) yields the equality

> ainc(h)gi =Y enup(dplt:).
inc (higi)=6; 3k i=1
If we write the right-hand side of (2.5) as Y ;_, h}g;, then
inc (higi) < ds.
Consequently, the polynomial f finally can be expressed as

f= Zhg’gi, inc(hl'g;) < &y.
i=1

35

(2.6)

The existence of such an expression (2.6) contradicts the definition of §;. O

Lemma 2.3.3. Let w be a monomial of S and f1, fa,..., fs polynomials of
S with inc(f;) = w for all 1 < i < s. Let g = > bifi (# 0) be a linear
combination of f1, fa,..., fs with each b; € K and suppose that in.(g) < w.
Then g is a linear combination of the S-polynomials S(f;, fi), 1 < j, k < s.

Proof. Let ¢; denote the coefficient of w = in.(f;) in f;. Then

=1
Let g9i = (I/Cl)fz Then

S(fifu) =95 —grk, 154, k<s.

Now, we compute that

Z bi fi = Z bic;g;
i=1 i=1

= bic1(g1 — g2) + (bicr + bac2)(92 — g3)
+(brer + baca + bzes) (g3 — ga)
+oo+(ber -+ bs—1cs—1)(gs—1 — gs)
+(brcr + - -+ bscs)gs-
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Since Y 7_; bic; = 0, it follows that

S

sz’fi = Z(blcl + o Fbimiciz)S(fiza, i),
i=1

i=2
as desired. O

In applying Buchberger’s criterion it is not always necessary to check
whether all S-polynomials S(g;,g;) with ¢ # j reduce to 0 with respect to
g1, - --,9s. This may substantially save time in Buchberger’s algorithm which
is described in the next subsection.

The first result in this direction is the following

Corollary 2.3.4. If g1, ..., gs are nonzero polynomials of S such that in<(g;)
and inc(g;) are relatively prime for all i # j, then {g1,...,9s} is a Grébner
basis of I = (g1,...,9s)-

Secondly we have

Proposition 2.3.5. Let I be a nonzero ideal of S and G = {g1,...,9s}
a system of generators of I. Consider the S-module epimorphism e:S° —
(in(g1),...,in(gs)) which fori=1,...,s maps the canonical basis element e;
to in(g;). Then

(a) for alli,7=1,...,s with i < j the elements

e lem(in< (gi), in< (gj))e} _ 1cm(in<(gj),in<(gi))e
N in<(g:) ’ in<(g:)

i
generate Ker(e).

(b) Let R be any subset of the relations r;; with the property that R generates
Ker(e). Then G is a Grébner basis of I if and only if S(gs, g;) reduces to
0 with respect to g1,...,gs for alli,j such that ry; € R.

Proof. (a) Set u; = in(g;) and dege; = degu; = a; for i = 1,...,s. Then e
is a Z"-graded S-module homomorphism, and hence Ker(e) is generated by
Z"-graded elements. Let 7 = >_7_| r;e; be a nonzero element in Ker(e) of Z"-
degree a. Then each r; € S is homogeneous of degree a—a;. Hence each r; # 0
is of the form c;v;, where ¢; € K and where v; is a monomial of degree a — a;.
Since r € Ker(e), it follows that 0 = €(r) = >, c;v;u; = (D, ¢;)x®, where each
of the sums is taken over those i for which r; # 0. For simplicity let us assume
that ¢; #0fori=1,...,kand ¢; =0fori=k+1,...,s. Then Eleci =0
andr = ZLQ c¢i(vie;—v1e1). Each of the summands ¢; (v;e; —vier) in r belongs
to Ker(e) and hence is a multiple of (lem(uy,w;)/u;)e; — (lem(uq,u;)/uq)es,
as desired.
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(b) We go back to the proof of Theorem 2.3.2. In equation (2.3) we
express the sum (x) Zin<(hi.‘]i):6 ¢iine(h;)g; as a linear combination of S-
polynomials. We only need to sflowz if R is a set of relations of type ry;
generating Ker(e), then () can be written as a linear combination of those
S-polynomials S(g;, g;) for which r;; € R. Indeed, since it is assumed that
inc(f) < dy, it follows from (*) that Zin<(higi):5f ¢iine(h;)inc(g;) = 0.
Therefore part (a) implies that » =, .= 5, Ci inc (h;)e; is a linear combina-
tion of the relations r;; € R. For simplicity we may assume that the coefficient
of in<(g;) in g; is 1 for all i. Then, replacing the basis elements e; by the poly-
nomials g; the relation r;; becomes the S-polynomial S(g;,g;), and hence it
follows that (x) is a linear combination of the S-polynomials S(g;, g;) with
r;j € R, as desired. a

2.3.3 Buchberger’s algorithm

The Buchberger criterion supplies an algorithm to compute a Grébner basis
starting from a system of generators of an ideal.

Let {g1,92,.-.,9s} be a system of generators of a nonzero ideal I of S.
Compute the S-polynomials S(g;,g;). If all S(g;,g;) reduce to 0 with re-
spect to ¢g1,...,9s, then, by the Buchberger criterion, {g1,g2,...,9s} is a
Grobner basis. Otherwise one of the S(g;, g;) has a nonzero remainder gs41.
Then none of the monomials in<(g1),in<(g2),...,in<(gs) divides in<(gs+1)-
In other words, the inclusion

(in<(g1),in<(g2), - .., in<(gs)) C (in<(g1),in<(g2), .-, in<(gs), in<(gss1))

is strict.

Notice that gs4+1 € I. Now we replace {g1,92,...,9s} by {91,-.., s, gs+1}
and compute all the S-polynomials for this new system of generators.

If all S-polynomials reduce to 0 with respect to ¢1,92,...,9s,gs+1, then
{91,92,---,9s,9s+1} is a Grobner basis. Otherwise there is a nonzero remain-
der gs+2 and we obtain the new system of generators {g1,92,...,9s+1,9s+2},
and the inclusion

(in<(g1),in<(g2), - - -,in<(gs), in<(gs+1))
C (in<(gl)a in< (92), s 7in< (93)7 in< (gs+1)7 in< (gs—&-Q))

is strict.

By virtue of Dickson’s lemma, it follows that these procedures will termi-
nate after a finite number of steps, and a Grobner basis can be obtained.

In fact, if this were not the case, then a strictly increasing infinite sequence
of monomial ideals

(in< (gl)a inc (92)7 ceeying (99)) c (in< (91)7 sy ine (gs)a inc (gs+1))
c---C (il’l<(g1), oo 7in<(gs)7in<(gs+1)7 v 7in<(gj)) c--
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would arise. However, if M = {in<(g1),...,in<(gs),in<(gst1),...} and if
M = {inc(gi,),in< (i), - -, ine(gi,) } iy < < <lg,

then, for all j > i,, one would have

(in< (gi1)7 in< (gi2)7 s 7in< (giq))
= (in<(g1),in<(g2), - - .,in<(gs,), in<(gi,+1), - - -, in<(g;)),

which is a contradiction.
The above algorithm to find a Grébner basis starting from a system of
generators of [ is said to be Buchberger’s algorithm.

Ezample 2.3.6. We continue Example 2.1.6. Let S = K|[z1,22,...,27] and
<jex the lexicographic order on S induced by z1 > xo > --- > x7. Let f =
X124 — 2223 and g = 2427 — T5Te with their initial monomials ine, (f) = z124
and inc, (9) = zqz7. Let I = (f,g). Then {f, g} is not a Grobner basis
of I with respect to <jex. Now, as a remainder of S(f,g) = z7f — 19 =
T1T5Te — Taxsxy with respect to f and g, we choose S(f,g) itself. Let h =
X125T6 — Taxzxy with ing, (h) = zyx526. Then ing,_ (g) and in.,_(h) are
relatively prime. On the other hand, S(f, h) = zox3(x427 — x526) reduces to 0
with respect to f, g, h. It follows from the Buchberger criterion that {f,g,h}
is a Grobner basis of I with respect to <jex.

A binomial is a polynomial of the form u—v where v and v are monomials.
A binomial ideal is an ideal generated by binomials.

Proposition 2.3.7. Let I C S be an ideal and < a monomial order on S.

(a) If I is graded, then the reduced Grébner basis of I with respect to < consists
of homogeneous polynomials.

(b) If I is a binomial ideal, then the reduced Grébner basis of I consists of
binomials.

Proof. (a) If f and g are homogeneous polynomials, then the S-polynomial
S(f, g) is again homogeneous. In the division algorithm, if gy, ..., gs and f are
homogeneous polynomials, then a remainder f’ of f with respect to g1, ..., gs
is again homogeneous. The above two facts, together with Buchberger’s algo-
rithm, guarantee that a homogeneous ideal I possesses a Grobner basis consist-
ing of homogeneous polynomials. Thus by using the algorithm to compute the
reduced Grobner basis of I, which is discussed in the proof of Theorem 2.2.7,
it turns out that the reduced Grobner basis of I consists of homogeneous
polynomials.

(b) Replacing “homogeneous polynomial” with “binomial” in the proof of
(a) yields a proof of (b). O
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Problems

2.1. Give a direct proof of Dickson’s Lemma for n = 2.

2.2. (a) Show that there is a unique monomial order on KJz1].
(b) Let n > 2. Show that there are infinite many monomial orders on S =
Klzy,...,xn].

2.3. Let S = Kz1,...,z6). Let f = z125 — 2024 and g = xoxy — 2326.

(a) Find a monomial order < on S such that {f, g} is a Grobner basis of
I = (f,g) with respect to <.

(b) Find a K-basis of S/I consisting of monomials.

2.4.Let S = Klz1,...,26]. Let f = mia5 — xoxy, ¢ = 2126 — T334 and
h = To2Xg — X3x5.

(a) Find a monomial order < on S such that {f,g,h} is a Grébner basis of
I =(f,g,h) with respect to <.

(b) Find a K-basis of S/I consisting of monomials.

2.5. Work with the same situation as in Example 2.2.2. Compute a remainder
of the following polynomials:

(i) 2® — 2%y3 — 23 — 1;

(ii) y* —2*y* +9° — 1.

2.6. Show that G = {g1,...,gs} is a Grobner basis of I = (¢1,...,9gs) if and
only if each nonzero polynomial f € I reduces to 0 with respect to g1, ..., ¢s.

2.7. By using the Buchberger algorithm compute the reduced Grébner basis
of the ideal discussed in Example 2.1.10 with respect to the lexicographic
order <jex.

2.8. Let S = Kx1,9,...,28] and I the ideal of S generated by
fi=2w3 — w47,  fo =326 — 375,  f3 = X173 — V274

(a) Show that there exists no monomial order < on S such that {f1, fo, f3} is

a Grobner basis of I with respect to <.

(b) By using the Buchberger algorithm compute the reduced Grdbner basis
of I with respect to the lexicographic order <jex.

2.9. Let S = K[z1,...,2,] and B = K[xp,...,2Zy], where 1 < m < n. Let
<g be a monomial order on S.

(a) For u,v € Mon(B), we define u <p v if u <g v. Show that <p is a
monomial order on B.

(b) Let I be an ideal of S. Show that I N B is an ideal of B.

(c) Let G be a Grobner basis of a nonzero ideal I of S with respect to <g and
suppose that, for each g € G, one has g € B if in<(g) € B. Show that GN B
is a Grobner basis of I N B with respect to <p. Thus in particular TN B =0
ifGnB=0.

(d) Let <purelex be the pure lexicographic order on S. Show that, for a nonzero
polynomial f of S, one has f € B ifin. ... (f) € B.
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2.10. Let f1,..., fs be binomials and m a monomial. Show that every remain-
der of m with respect to f1,..., fs is again a monomial.
Notes

Nowadays, we can easily find well-written textbooks that introduce Grébner
bases, for example Adams—Loustaunau [AL94], Becker—Weispfenning [BW93],
Cox-Little-O’Shea [CLO92] and Kreutzer-Robbiano ([KR00] and [KRO05]).
The computational aspects of commutative algebra are highlighted in the
book [GPO08] by Greuel and Pfister and the book of Vasconcelos [Vas98]. A
short but rather comprehensive introduction to Grébner bases is given in the
book of Eisenbud [Eis95, Chapter 15].

In history, the lexicographic order was first used by C. F. Gauss in his
proof (e.g. [CLO92, pp. 312-314]) of the fundamental theorem of symmetric
polynomials, i.e. every symmetric polynomial can be written uniquely as a
polynomial of the elementary symmetric functions.

Gordan’s proof ([Gor00]) of Theorem 2.1.8 might be the earliest use of
the technique of Grobner bases. Later, in 1927, initial ideals with respect to
lexicographic order essentially appeared in Macaulay [Mac27] to characterize
the possible Hilbert function of homogeneous ideals of the polynomial ring.

In the mid-1960s, Buchberger introduced the notion of Grébner basis in
his thesis, where a Grobner basis criterion and an algorithm to compute a
Grébner basis was presented.

At the same time, in 1964, Hironaka independently introduced “standard
bases” in his major paper on resolution of singularities of an algebraic variety.
Standard bases are analogous to Grobner bases in the formal power series
ring.

Sturmfels [Stu96] discusses the Grébner basis technique in the theory of
convex polytopes. The article of Bruns and Conca [BCO03] is a compact pre-
sentation of how to apply Grobner basis theory to the study of determinantal
ideals. For information about computer algebra systems we refer the reader
to [CLO92, Appendix C], [CLO98] and Eisenbud [Eis95, Chapter 15].
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Monomial orders and weights

For a given ideal I and a given monomial order <, the initial ideal in.(I) of
I can also be obtained as the initial ideal with respect to a suitable integral
weight. This point of view allows us to consider in< () as the special fibre of a
flat family which is parameterized by the elements of the base field and whose
general fibre is I. From this fact we deduce that the graded Betti numbers of
in(I) are greater than or equal to the corresponding graded Betti numbers
of I. This fundamental observation has many applications.

3.1 Initial terms with respect to weights

3.1.1 Gradings defined by weights

Let w = (w1, ...,w,) € N" be an integer vector. We call this vector a weight
and define a new grading on S = KJz1,...,z,], different from the standard
grading, by setting deg,, x; = w; for i =1,...,n. Then

n
deg,, x* = (a,w) = Zaiwi.
i=1

A polynomial f € S is called homogeneous of degree j with respect to the
weight w, if deg,, u = j for all u € supp(f).

For example, if we let w = (1,2, 3), then f = 32§ — 212523 is homogeneous
of degree 6 with respect to this weight.

Now we fix a weight w, and let S; be the K-vector space spanned by all ho-
mogeneous polynomials of degree j. The vector space S} is finite-dimensional,
and the monomials v with deg, v = j form a K-basis of this vector space.

Moreover,
s=s;.
J
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DOI 10.1007/978-0-85729-106-6_3, (©) Springer-Verlag London Limited 2011


http://dx.doi.org/10.1007/978-0-85729-106-6_3

42 3 Monomial orders and weights

Therefore, each polynomial f € S can be uniquely written as f = >_ j f; with
f; € Sj. The summands f; are called the homogeneous components of f.
The degree of f is defined to be deg,, f = max{j : f; # 0}, and if
i = deg,, f, then f; is called the initial term of f, and is denoted by in(f).
Of course, iny(f) is in general not a monomial but a polynomial.
Let I C S be an ideal. Similarly as for monomial orders we define the
initial ideal of I with respect to w as

inw(I) = {inw(f) : f€I}).
By its definition, iny (I) is a homogeneous ideal with respect to the grad-
ing given by w, and of course is finitely generated. A set of polynomials
fi,---s fm € I such that iny(I) = (inw(f1),...,inw(fm)) is called a stan-
dard basis of I with respect to w.

3.1.2 Initial ideals given by weights

The similarities between Grobner bases and standard bases are apparent. We
shall now see that the Grobner basis of an ideal may be viewed as the standard
basis with respect to a suitable weight. To see this we shall need

Lemma 3.1.1. Given a monomial order < and a finite number of pairs of
monomials (u1,v1),. .., (Um, Vm) such that u; > v; for alli. Then there exists
a weight w such that deg,, u; > deg., v; for all i.

Proof. Let u; = x® and v; = xP for i = 1,...,m. We are looking for an
integral vector w € N™ such that (a; — b;, w) > 0 for all . Suppose no such
w exists. Then by the Farkas Lemma (see [Sch98, Section 7.3]) there exist
¢; € Zy with ¢; > 0 for at least one i such that the vector g = > 1", ¢;i(a; —
b;) has entries < 0. Then this implies that [[;~, (xP!)% = [~ (x®)%x 8,
contradicting the fact that u; > v; for all ¢, see Lemma 2.1.4. O

Now we have

Theorem 3.1.2. Given an ideal I C S and a monomial order <, there exists
a weight w such that
ing (I) = ing (I).

Proof. Let g1, ..., gm be a Grobner basis of I. We consider all pairs (in< (g;), «)
where u € supp(g;) and u # in.(g;). There are finitely many such pairs. Hence
by Lemma 3.1.1 there exists a weight w such that deg,, in<(g;) > deg,, u for
all u € supp(g;) with u # inc(g;) and for all 4. It follows that iny(g;) =
¢iin<(g;), where ¢; is the coefficient of in<(g;) in g;. In particular we see that

inc(I) = (inw(g1), - - -, inw(gm)) C ing(I).
Consequently, we obtain
inc(I) =inc(inc (1)) C inc(inw(I)) = in<, (1),

where < is the monomial order defined in Example 2.1.3. Thus the assertion
follows from statement (b) in Proposition 2.2.6. O
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3.2 The initial ideal as the special fibre of a flat family

3.2.1 Homogenization

Similarly to the standard gradings there is a process of homogenizing for the
grading defined by a weight w.

Let f € S be a nonzero polynomial with homogeneous components f;
(with respect to the weight w). We introduce a new variable ¢, and define the
homogenizationof f with respect to w as the polynomial

=" fitteew I e st
i

Note that f is homogeneous in S[t] with respect to the extended weight
w' = (wy,...,wy, 1) € N**! which assigns to the new variable ¢ the degree 1.
In case of the standard grading (where w = (1,1,...,1)) this is the usual
homogenization.
One easily verifies that for any two polynomials f, g € S one has

(fo)" = ftg", (3.1)
and

(f + g)" = tdesw(ftg)—degy, | ph | ydegy, (f+g)—degy g gh. (3.2)

The second equation is only valid in S[t,¢~!]. Indeed, the exponents of t may
be negative.
Let I C S be an ideal. The homogenization of I is defined to be the
ideal
I"={f"fery) cs.

Let fi,..., fm be a system of generators of I. In general I" # (fF,..., f1).
However, a system of generators of I" can be computed by using Grébner

bases.
We first show

Lemma 3.2.1. Let f € S[t] be homogeneous. Then f € I" if and only if
f=tmg" for some g € I and some m € 7.

Proof. The “if” part of the assertion is obvious. Conversely, assume that f €
I". Then f = Sy gifl with f; € I and g; € S[t] homogeneous.

For any homogeneous polynomial p € S[t], let p € S denote the dehomog-
enization of p which is obtained from p by substituting ¢ by 1. Then

= aft=> aficl
=1 1=1

Since f = t™ f" for some m € Z, , we may take g = f. O
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Given a weight w on S. A monomial order < is said to be graded with
respect w, if whenever deg ,(u) < deg,,(v) for u,v € Mon(S), then u < v. For
example, the lexicographic order and reverse lexicographic order introduced
in Example 2.1.2 are graded with respect to the standard grading. More gen-
erally, if < is any monomial order, then the monomial order <, introduced
in Example 2.1.3 is graded with respect to w.

For a monomial order < which is graded with respect to w we define a
natural extension <’ to S[t] as follows:

x2t¢ <’ xPt? if and only if (i) x® < xP, or (ii) x® = x® and ¢ < d.

This monomial order has the property that in.(g) = in</(g") for all
nonzero g € S.

Proposition 3.2.2. Let I C S be an ideal and G = {g1,...,9s} a Grébner
basis of I with respect to a monomial order < which is graded with respect to
w. Then G" = {gt, ..., g"} is a Grébner basis of I" with respect to <'.

Proof. Since I is homogeneous it suffices to show that for any homoge-
neous element f € I" one has in./(f) € (inc/(gh),...,inc/(g?)). In fact,
inc/(f) = in</(f;) for some homogeneous component f; of f, and since I" is
homogeneous, all homogeneous components of f belong to I”.

By virtue of Lemma 3.2.1 we have f = t™g¢" for some g € I and some
m € Zy. By the choice of our monomial order,

ine(f) =™ ine(g") =™ inc(g).
Since G is a Grobner basis of I, there exists u € Mon(S) such that in.(g) =
u in<(g;) for some 4, and since in<(g;) = in</(g) we obtain
in_/(f) = t"u in (gl),
as desired. O

Example 3.2.3. Let I = (z1709 — 1,29 — 22). Then I has the Grobner basis
{x1m9 — 1,23 — 19,23 — 21} with respect to the reverse lexicographic order.
Thus the homogenization of I with respect to the standard grading is given
by

I" = (2120 — 12,22 — tao, 22 — tay).

3.2.2 A one parameter flat family

Let I C S be an ideal. The inclusion K[t] C S[t] induces a natural K-algebra
homomorphism K[t] — S[t]/I". This gives S[t]/I" a natural K[t]-module
structure. We will show that S[t]/I" is a flat K[t]-module. One even has

Proposition 3.2.4. S[t]/I" is a free K[t]-module.



3.3 Comparison of I and in([) 45

Proof. Let < be monomial order which is graded with respect to w. According
to Proposition 3.2.2, {g?,..., g"} is Grébner basis of I" provided {g1, ..., 9s}
is Grébner basis of I. Moreover, one has in/(gl') = in.(g;) for all i. There-
fore, by Proposition 2.2.5, the residue classes modulo I” of the monomials in
S[t] which do not belong to (in<(g1),...,in<(gs))S[t] establish a K-basis of
S[t]/I". This implies at once that S[t]/I" is a free K[t]-module whose basis
consists of the residue classes modulo I of monomials in S which do not
belong to (in<(g1),...,in<(gs))- O

Corollary 3.2.5. For all a € K, the element t — a is a nonzero divisor of
S[t]/I".

Proof. We know from Proposition 3.2.4 that S[t]/I" is a free K [t]-module. Let
(e;)jes be a K[t]-basis, and suppose (t —a)f = 0 for some f € S[t]/I". Write
=2, fe; with f; € K[t]. Then 0 = > .(t — a)fje;, and so (t —a)f; =0
for all 5. This implies that all f; = 0. Consequently, f = 0. a

A one parameter flat family of K-algebras is a family of K-algebras
R,, a € K, for which there exists a K-algebra R and a flat K-algebra ho-
momorphism K[t] — R whose fibres R/(t — a)R are isomorphic to R, for all
a € K. The K-algebra Ry is called the special fibre, and R, for a # 0 a
general fibre of the family.

Corollary 3.2.6. Let I C S be an ideal, and let w be a weight. Then there ex-
ists a one parameter flat family of K -algebras whose special fibre is isomorphic
to S/in (I) and whose general fibres are all isomorphic to S/1I.

Proof. The one parameter flat family is defined by the graded flat K-algebra
homomorphism K [t] — S[t]/I". It is clear that the substitution ¢ — 0 maps
I" to iny (I). Thus the special fibre of the family is the one announced.

On the other hand, by Proposition 3.2.2 there exists a system of generators
g1,---,gs of I (in fact a Grébner basis) such that gf,...,g" is a system of
generators of I". Say, ¢; = >, chu; then the substitution ¢ — a for a € K
with a # 0, maps g to g; o = Y., ci,ad®8w gi—degw vy,

The automorphism ¢ : S — S with ¢(z;) = a™iz; for all ¢, maps g; , to
ad°8w 9i g, This shows that the general fibre is isomorphic to S/1. O

3.3 Comparison of I and in([I)

Throughout this section I C S will always be a graded ideal (with respect to
the standard grading of S). We fix a weight w. Then I C S[t] has a system of
generators of the form g7, ..., g", where g1,...,gs is a suitable homogeneous
system of generators of I, see Proposition 3.2.2.

If we assign to each z; the bidegree (w;, 1) and to t the bidegree (1,0),
then all the generators g are bihomogeneous, and hence I” is a bigraded



46 3 Monomial orders and weights

ideal. Therefore I" has a minimal bigraded resolution F. The minimality of

the resolution is equivalent to the condition that all entries in the matrices

describing the differentials of the resolution F belong to n = (x1,...,2,,1).

The reader who is not so familiar with resolutions is referred to Appendix A2.
We set T = S[t], and let

]F:O—»FPHFp_l—>~~*>F1*>F0—>T/Ih*>0

with I = @k’j T(—k,—j)Bu00,

Since t is a nonzero divisor on T with ¢ € n, the complex F = F/tF is a
bigraded minimal free S-resolution of (T'/I")/t(T/I") = S/ iny(I), and it has
the same bigraded shifts as F. Note that the second component of the shifts
in the resolution are the ordinary shifts of the standard graded ideal in, (I).
Thus we have shown that

Bi;(S/ inw (I Z Bi(k,;) forall i and j (3.3)

On the other hand, let G = F/(t—1)F. Since t—1 is a nonzero divisor on T, the
complex G is a free S-resolution of (T'/I")/(t—1)(T/I") = S/I. However, t—1
is only homogeneous with respect to the second component of the bidegree.
Therefore, G is no longer a bigraded resolution of S/I. However, the second
components of the shifts in the resolution of F are preserved. Hence G is a
graded free resolution of the standard graded ring S/I. But in general G may
not be a minimal free resolution of S/I, because t — 1 ¢ n.

A comparison with the minimal graded free resolution of S/I then implies
that

B (S/T) < Zﬁz (k,j) foralliand j. (3.4)

Thus combining (3.3) with (3.4) we obtain the important
Theorem 3.3.1. Let I be a graded ideal I C S and w a weight. Then
Bi;(I) < Bij(inw(I)) for all ¢ and j.

The following example illuminates what happens in this deformation pro-
cess.

Example 3.3.2. Let I = (v122—23, —v123+73, 23 —2273) C S = K21, 72, 23]
Then with respect to the lexicographic order we obtain the Grébner basis

3 3 2 2 2
{—a5 + 3, x129 — x5, —x123 + T5, 2] — TaT3}.

Thus the homogenization of I with respect to the weight (2,1,1) gives the
ideal
I" = (=23 + a3, 220 — 23t, —2123 + 25t, 27 — Toxs3t?).
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The bigraded T-resolution of I" is then given by

F:0— T(—6,—-4) —*— T(—4,-3)®T(-5,-3)2®T(-5,—4)
P T(=3,-3) & T(~3,-2)2 @ T(-4,-2) — I" -0

Here the maps are described by the matrices

T t 0 0 —x
2

T9 xr3 Tot 1 —X
a= and pg=|"" 2
—T3 To —x1 —x3t —x3

t 0 —T3 —X2 0

If we now specialize ¢ to 0, then we obtain from I the minimal graded free
S-resolution F of iny (1) = (2123, £122, 23, —23 + x3), namely

F:0— S(—4) — S(=3)*® S(—4) — S(=3) ® S(—2)> — inw (I) — 0,

with the maps described by the matrices

T 0 0 0 —x

To x3 0 —x%

and 2

—x3 T —x1 0 —z5§
0 0 —T3 — T2 0

On the other hand, if we specialize ¢ to 1, then we obtain a graded free S-
resolution G of I with the same shifts as in the resolution of F. But now this
resolution is not minimal, because the entries of the matrices describing the
maps in the resolution contain units. Indeed, the matrices are

X1 1 0 0 —X1
2

Xro x xro rT —%
and 3 3
—X3 T2 —T1 —X3 —T3
1 0 —x3 —XT2 0

However by cancelling isomorphic summands in G one obtains the graded
minimal free S-resolution of I:

0— S(-3)2 — S§(-2)> — I —0,
—X92 IT1 X3
—xT1 I3 T2

Theorem 3.3.1 together with Theorem 3.1.2 now yields

where

is the relation matrix of I.

Corollary 3.3.3. Let < be a monomial order on S. Then for any graded ideal
I C S one has
Bi;(I) < Bij(inc(I)) for all i and j.
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There are two important invariants attached to a graded ideal I C S
defined in terms of the minimal graded free resolution of S/I:

(1) the projective dimensionof S/I,
projdim S/I = max{i : 5;;(S/I) # 0 for some j}, and
(2) the regularity of I,
reg] =max{j: 5;,4+;(I) #0 for some i}.
The following theorem summarizes the comparison between in. (I) and I.

Theorem 3.3.4. Let I C S be a graded ideal and < a monomial order on S.
Then

(a) dim S/ = dim S/in<(I);

(b) projdim S/I < projdim S/ in.(I);
(c) reg S/I <regS/in(I);

(d) depth S/I > depth S/ in.(I);

Proof. (a) follows from the fact that the residue classes of the monomials
which do not belong to in.(I) form a K-basis of S/I. Indeed, this implies
that S/I and S/in<(I) have the same Hilbert function and hence the same
dimension; see Theorem 6.1.3.

(b) and (c) are immediate consequences of Corollary 3.3.3, while (d) follows
from (b) and the Auslander-Buchsbaum formula which says that

depth M + projdim M = dim S
for any finitely generated graded S-module M; see Corollary A.4.3. O

Corollary 3.3.5. S/I is Cohen—Macaulay (resp. Gorenstein) if S/ in(I) has
the corresponding property.

Proof. Since, by definition, a finitely generated graded S-module M is Cohen—
Macaulay if and only if dim M = depth M, Theorem 3.3.4 implies the state-
ment about Cohen—Macaulayness.

Concerning the Gorenstein property we use the fact (see A.6.6) that for a
graded ideal J C S we have: S/.J is Gorenstein if and only if S/J is Cohen—
Macaulay and the last non-vanishing Betti number of S/J is equal to 1. There-
fore, using again Theorem 3.3.4 and Corollary 3.3.3, the assertion follows. O

Ezxample 3.3.6. Of course it may happen, and in indeed in most cases it does,
that S/I is Cohen-Macaulay but S/in.(I) is not. For example, consider
the ideal I = (22 — xow3, w120 — 23,23 — 2123) C S = K21, 79, 73]. Then
ing, (I) = (v123, 2172, 23, 23), and the resolutions are

0— S(=3) — S(-2) — T —0,
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and
0 — 5(—4) — S(-3)* @ S(—4) — 5(-2)* ® §(-3) — inc,,, (I) — 0.

We have dim S/I = dim S/in.,_ (I) = 1. From the resolutions we deduce
that depthS/I = 1 and that depthS/in._ (I) = 0. Thus S/I is Cohen-
Macaulay and S/in, (I) is not Cohen—Macaulay. We also see that 2 =
reg] <regin., (I)=3.

Theorem 3.3.4 remains true more generally if we replace in (I) by iny (I)
everywhere in the statements.

As a final useful result concerning the comparison of I with in(I) we show

Proposition 3.3.7. Let I C S be a graded ideal and suppose that iny(I) is
a prime (resp. a radical) ideal. Then I is a prime (resp. a radical) ideal. In
particular, if in(I) is a squarefree monomial ideal, then I is a radical ideal.

Proof. Let I" € S[t] be the homogenization of I with respect to the weight
w. Then I" is a graded ideal in S[t], if we set degx; = w; and degt =
1. We claim that I" is a prime ideal (resp. a radical) ideal, if iny (I) has
this property. Once this claim is shown, the desired conclusion follows since
IS[t,t=1] = I"S[t,t~!]. This isomorphism is induced by the automorphism
: S[t,t=Y] — S[t,t!] which is defined by x; — t¥iz; fori=1,...,n.

In order to prove the claim we use Corollary 3.2.5 together with the fol-
lowing fact: let R be a finitely generated positively graded K-algebra, and let
t € R be a homogeneous nonzero divisor of R such that R/tR is a domain or
a reduced ring. Then R has this property, too.

Indeed, set R = R/tR and denote by @ € R the residue class of an element
a € R. Suppose R is reduced and that a” = 0 for some n, then @ = 0, and
so @ = 0. Therefore a = bt for some b € R, and so b"t" = 0. However, since ¢
is a nonzero divisor on R, it follows that b™ = 0. Again, since R is reduced it
follows that b = 0 which implies that b € (), so that a € (t)2. By induction we
have that a € (¢)* for all k. By Krull’s intersection theorem, (1, (t)* = (0),
and so a = 0, as desired. In the same way one shows that the property of R
being a domain can be lifted to R. O

Problems

3.1. What is the homogenization of the ideal I = (2129 — 3, Tax3 — 21, 123 —
x2) with respect to the standard grading?

3.2. Give an example of a graded ideal I C S for which depth I > depthin.(I)
and reg I < regin<(I).
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3.3. A graded ideal I C S is called a complete intersection if I is generated by
a regular sequence f1, ..., fi, of homogeneous polynomials. Let I be graded
ideal such that in. (I) is a complete intersection.

(a) Show that I is a complete intersection.

(b) Give an example of a complete intersection I for which in. (I) is not even
Cohen—Macaulay.

34.Let n > 2and I C S = K|[zy,...,2,] be the ideal generated by the
elements x3 — 27, i = 2,...,n and by the monomials z;x; with 1 <i < j <n.
Show that S/I is Gorenstein but in.(I) is never Gorenstein, no matter which
monomial order < on S we choose.

3.5. (a) Show that I is a complete intersection if in.(I) is a complete inter-
section for some monomial order on S.

(b) Show that I = (23 — 23, 2z122) C K|x1,22] is a complete intersection, but
in<(I) is never a complete intersection, no matter which monomial order <
on K|[z1, 23] we choose.

3.6.Let f € S = K[z1,...,z,] be a nonzero polynomial. We denote by f*
the highest nonzero homogeneous component of f. For an ideal I C S we let
I* be the ideal generated by all f* with f € I and f # 0. Show that [ is a
prime (resp. radical) ideal, if I* has this property.

3.7. Show that the ideal (x1y2 — x2y1, 21y3 — x3y1) C K21, T2, T3, Y1, Y2, Y3)
is a radical ideal, but not a prime ideal.

Notes

The fact that for any graded ideal in the polynomial ring and for any monomial
order the graded Betti numbers of the initial ideal are greater than or equal
to the graded Betti numbers of the original ideal has many theoretical and
practical applications. Indeed, this inequality of graded Betti numbers implies
that if the initial ideal has nice algebraic properties, then so does the original
ideal. For example, an elegant proof of the fact that determinantal ideals are
Cohen-Macaulay was given by Sturmfels [Stu90] by showing that the initial
of a determinantal ideal is the Stanley—Reisner ideal of a shellable simplicial
complex. Another interesting example of how to use the comparison with the
initial ideal is given in the theory of Koszul algebras, namely if the initial ideal
of a graded ideal is generated by quadratic monomials, then the quotient
algebra of the original ideal is Koszul. Here it is used that any quadratic
monomial ideal defines a Koszul algebra, as shown in [BF85]. A simple proof
of this fact can also be found in [HHR00]. More detailed information about
the comparison of I and in(I) can be found in the survey article [BC04] by
Bruns and Conca. There one can also find more references to this topic.
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Generic initial ideals

Generic initial ideals play an essential role in geometry as well as in shifting
theory, which will be studied in Chapter 11. Let S = Klz1,...,2,] be a
polynomial ring over an infinite field K, and < a monomial order on S which
satisfies ©1 > xo > --- > x,. For a graded ideal I C S it will be shown
that there exists a nonempty open set U of linear automorphisms of S such
that in (o) does not depend on o € U. The resulting initial ideal is called
the generic initial ideal of I with respect to <. It turns out that generic
initial ideals are Borel-fixed, and are even strongly stable if the base field is
of characteristic 0. Generic annihilator numbers will be introduced and it will
be shown that the extremal Betti numbers of an ideal and its generic initial
coincide.

4.1 Existence

Let K be a field. Recall that a subset of the affine space K™ is called Zariski
closed if it is the set of common zeroes of a set of polynomials in m variables.
A Zariski open subset of K™ is by definition the complement of a Zariski
closed subset. The topology so defined on K™ is called the Zariski topology.

Note that if K is a finite field, then any subset of K™ is Zariski closed,
and consequently any subset of K™ is Zariski open as well.

Throughout this chapter we will assume that K is an infinite field, because
otherwise the statements which refer to Zariski open sets would be meaning-
less.

An important property of Zariski open sets is given in

Lemma 4.1.1. Let Uy, ..., U, C K™ be nonempty Zariski open sets. Then
Ulﬂ...ﬂUr#(Z).

Proof. Tt is enough to show that UNU’ # (), if U and U’ are nonempty Zariski
open sets of K™. Let A= K™\ U and A’ = K™ \ U’, and assume that A is
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the common set of zeroes of the polynomials f1,..., f,. and A" is the common
set of zeroes of the polynomials gi,...,9s. Let x € U and x’ € U’. Then
there exist f; and g; with f;(x) # 0 and g,(x’) # 0. It follows that f;g; # 0.
Since K is infinite, there exists x”” € K™ such that f;g;(x”) # 0. This implies
fi(x") # 0 and g;(x") # 0. Hence x" e UNU’. O

Lemma 4.1.1 says that any nonempty Zariski open set is a dense subset of
K™,

Let S = Klx1,...,2,] be the polynomial ring in n variables and let
GL, (K) denote the general linear group, that is, the group of all invertible
n X n-matrices with entries in K. Any a € GL,(K), o = (a;;) induces an
automorphism

a:S—S8, flz,...,z,) — f(Zailxi,...,Zamxi).
i=1 i=1

This type of automorphism of S is called a linear automorphism.

The set M,,(K) of all n X n matrices may be identified with the points in
K™ ™ the coordinates of the points being the entries of the corresponding
matrices. It is then clear that GL,(K) is a Zariski open subset of M, (K),
because o € M, (K) belongs to GL,,(K) if and only if det  # 0. This is the
case if and only if @ does not belong to the Zariski closed set which is defined
as the set of zeroes of the polynomial det(x;;) € K[{xi;}i j=1....n]-

Since GL,,(K) itself is open, a subset of GL,,(K) is open if and only if it
is a Zariski open subset of K"*".

Theorem 4.1.2. Let I C S be a graded ideal and < a monomial order on S.
Then there exists a nonempty open subset U C GLy, (K) such that inc(al) =
inc(o/I) for all ;o € U.

Definition 4.1.3. The ideal in<(al) with o € U and U C GL,(K) as given
in Theorem 4.1.2 is called the generic initial ideal of I with respect to the
monomial order <. It is denoted gin_ (7).

In preparation of the proof of Theorem 4.1.2 we introduce some concepts
and notation: Let d,t € N with ¢ < dimg Sq. We consider the ¢th exterior
power /\t Sg of the K-vector space Sy, cf. Chapter 5.

Given a monomial order < on S, an element uq A us A - - - A uy where each
u; is a monomial of degree d and where u; > us > --- > uy, will be called a
standard exterior monomial of /\t Sq. It is clear that the standard exterior
monomials form a K-basis of /\t Sq4. In particular, any element f € /\t Sqis a
unique linear combination of standard exterior monomials. The support of
f is the set supp(f) of standard exterior monomials which appear in f with
a nonzero coefficient.

We order the standard exterior monomials lexicographically by setting

UL AU A= AUy > 01 AV A=+ Ny,
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if u; > v; for the smallest index ¢ with w; # v;. This allows us to define
the initial monomial in.(f) of a nonzero element f € /\t Sy as the largest
standard exterior monomial in the support of f.

Now let V' C S; be a t-dimensional linear subspace of Sg and f1,..., f; a
K-basis of V. Then the 1-dimensional K-vector space /\t V is generated by
JinfaNo A fr.

We let in. (V) be the K-vector space generated by all the monomials
inc(f) with 0 # f € V. Then we have

Lemma 4.1.4. Let wq,...,wy; be monomials in Sy with wy > wg > -+ > wy.
The following conditions are equivalent:

(a) the monomials wy, ..., ws form a K-basis of in(V);
(b) if w; = inc(g;) with g; €V, then g1,...,g¢ is a K-basis of V and

inc(g1 A+ Age) =inc(gr) A+ Ainc(ge);
(e)if f1,-.., [t is a K-basis of V, then inc(fi A+ A fe) =wi A+ Awy.

Proof. (a) = (b): Let 0 # f € V; then in<(f) = w; for some i. Hence there
exists a € K such that f —ag; = 0 or in.(f —ag;) < w;. Arguing by induction
on i we see that f —ag; is a K-linear combination of ¢;;1,...,g:. This shows
that g1,..., ¢ is a system of generators of V.

Suppose Zzzl a;g; = 0 with a; € K and not all a; = 0. Let j be the small-
est integer such that a; # 0. Then in<(Zf:1 a;9;) = w; # 0: a contradiction.

Thus the elements g1, ..., g; are linearly independent.
Since wy; > wg > -+ > wy it follows that inc(g1) A - - Ainc(g:) is a
standard exterior monomial. Let ¢ = g1 A --- A ¢¢; then, up to a sign, a

standard exterior monomial of supp(g) is of the form uy A ug A -+ A uy with
u; € supp(g;). Since w; > u; it follows that any standard exterior monomial
of supp(g) is less than or equal to wy; Awa A+ -+ Aw;. On the other hand, since
wy Awa A - Awy € supp(g), the desired conclusion follows.

(b) = (c): Since f1 A--- A fi and g1 A --- A g differ only by a nonzero
scalar, we have

inc(fin---Afe)=inc(@r A Age) =wp A+ Awy.

(¢) = (a): We claim that each w; € in.(V). Then, since dimgV =
dimg in< (V), this implies that wy, ..., w; is a K-basis of in.(V), as we want
to show. Indeed, since inc(f1 A--- A f;) = inc(hy A--- A hy) for any other
basis hy,...,hs of V| we may assume that in<(f1) > inc(f2) > -+ > inc(fy).
But then w; = in.(f;). O

Now let « € GL,(K) be a linear automorphism of S, and fi, fa,..., f; a
K-basis of V. Then a(f1), a(f2),...,a(ft) is a K-basis of the vector subspace
aV C Sy, and if inc (a(f1) A Aa(fi)) = wi Awa A« Awy, then inc (aV)
has the K-basis wy, ..., ws; see Lemma 4.1.4.
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Lemma 4.1.5. Let w1 A--- ANw; be the largest standard exterior monomial of
/\t Sq with the property that there exists a € GL,,(K) with

inc(a(fi) N Aa(fy) =wi A Awy.

Then the set U = {a € GL,(K) : inc(a(fi) A~ Aa(ft)) =wi A Aw} is
a nonempty Zariski open subset of GL, (K).

Proof. By its definition, U # (). Let p(«) be the coefficient of wq A -+ A wy
in the presentation of a(f1) A--- A «a(f;) as a linear combination of standard
exterior monomials. Then « belongs to U if and only if p(a) # 0.

Basic linear algebra implies that p(«) is a polynomial function of the entries
«a whose coefficients are determined by f1,..., f;; see Example 4.1.6. This
yields the desired conclusion. a

Ezample 4.1.6. Let S = KJx1, 2], and < the lexicographic monomial order
on S. Then the standard exterior monomials in /\2 Sy are:

x% Nx1X0 > :r% /\x% > x12T2 A m%

Let fi = 22, fo = 23 and a € GLo(K). Then a(f;) = a?,23 + 2ay1a21 7172 +

a3,73 and a(fa) = a192? + 20120000719 + 3473, Therefore,

a(fi) Aa(fo) = (20 012009 — 205501 0001) 3T A yap + -+,
and so p(a) = 2(a2;a1a099 — AFg1 ).
Now we are ready to give the proof of Theorem 4.1.2.

Proof. Let d € Z4 with Iy # 0. We define the nonempty Zariski open subset
Uy C GL,(K) for the linear subspace I; C Sy similarly to how we defined
in Lemma 4.1.5 the Zariski open subset U C GL,,(K) for V' C Sg. For those
d € Zy with I; =0, we set Uy = GL,,(K).

Let « € Uy and set J; = inc(aly). By the definition of U; and by
Lemma 4.1.4, J; does not depend on the particular choice of o € Uy. We
claim that J = @, Jq is an ideal. In fact, for a given d € Z,, we have
UgNUgpq # 0. Then for any o € Ug N Uy it follows that

S1dg = Siinc(adq) C inc(algtr) = Jatr,

which shows that J is indeed an ideal.

Let ¢ be the highest degree of a generator of J, and let U = U;NU=N- - -NU...
For any a € U we will show that J; = in<(aly) for all d. This is obviously
the case for d < ¢, because a € Uy for all d < ¢. Now let d > ¢. We show by
induction on d, that J; = in<(aly). For d = ¢, there is nothing to prove. Now
let d > c¢. Applying the induction hypothesis we get

Ja=51J4-1 = S1inc(alg—1) Cinc(aly).

Since dimg J; = dimg in< (aly) we conclude that J; = inc (aly).
The (nonempty) Zariski open set U just defined, has the desired property.
(]
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The proof of Theorem 4.1.2 gives us the following additional information
about gin_ (I).

Proposition 4.1.7. Let t = dimg Iy and let wy Awg A-- - ANwy be the standard
exterior monomial generating \' gin_(I)q. Then

wy Awa A+~ Awy =max{inc(f): 0#£ f € /\a(I)d, a € GL,(K)}.

How can gin_(I) be computed? The nonempty Zariski open set U with
gin_(I) = inc(al) for all & € U is a dense subset of K™ with respect to the
Zariski topology. (Here m = n?.) Suppose K is a subfield of the real numbers,
for example K = Q, then U is also a dense subset of K" with respect to
the standard topology on K™. Indeed, suppose U is the complement of the
Zariski closed set A C K™, which is defined as the common set of zeroes of
the polynomials f;, j € J. Then a point x € K™ belongs to U if and only if
fj(x) # 0 for at least one j. To simplify notation we set f = f;. Let y € K™
and € > 0. Weset U, = {z € K™ : |z — y| < €} and show that U.NU # 0.
Suppose this is not the case, then f(z) = 0 for all z € U.. But then also

Of y— tm fatte) = f@
o, ™ =l i

atte; €U

=0

for all a € U, where e; denotes the jth standard basis vector of K. By
induction it follows that all higher partial derivatives of f vanish. This implies
that f =0, a contradiction.

Now as we know that U C K™ is a dense subset of K™ in the standard
topology, it is hard to avoid U when choosing a point x € K™. In other words,
if we pick x € K™ randomly, i.e. “generic enough”, then most likely x will
belong to U. This is how most computer algebra systems compute gin_ (7). An
uncertainty remains. Therefore it is advisable to make several random choices
of coordinates. If the result is always the same, then there is a good reason to
believe that this is gin_(I).

4.2 Stability properties of generic initial ideals

4.2.1 The theorem of Galligo and Bayer—Stillman

The subgroup B C GL,(K) of all nonsingular upper triangular matrices is
called the Borel subgroup of GL,(K). A matrix a = (a;;) € B is called
an upper elementary matrix, if a;; = 1 for all ¢ and if there exist integers
1 <k << nsuch that ag; # 0 while a;; = 0 for all ¢ # j with {¢, 7} # {k,}.
Recall from linear algebra that the subgroup D C B of all nonsingular diagonal
matrices together with the set of all upper elementary matrices generate B.

The main goal of this section is to show that gin_(I) is fixed under the
action of B. To be precise, we have
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Theorem 4.2.1 (Galligo, Bayer—Stillman). Let I C S be a graded ideal
and < a monomial order on S. Then gin_(I) is a Borel-fized ideal, that is,
a(gin (1)) =gin_(I) for all « € B.

Proof. We first notice that an invertible diagonal matrix ¢ keeps monomial
ideals fixed, because if di,...,d, is the diagonal of § and u is a monomial,
then 0(u) = u(dy,...,dy)u and u(dy,...,d,) € K\ {0}. Here u(dy,...,d,)
denotes the evaluation of the monomial u at the point (dy,...,d,), that is, if
u=ax'x5? - x% then u(dy,...,d,) =di*d3? - -don.

Suppose now there is an element o € B with a(gin_(I)) # gin_ (). Then,
since B is generated by invertible diagonal matrices (which fix gin_(I)) and
by upper elementary matrices, we may assume that « is an upper elementary
matrix.

Now since a(gin_ (1)) # gin_(I), there exists d € Z with a(gin_(1)q) #
gin_(I)q. Let t = dimg Iy = dimg gin_ (I)q. We let a act as a K-linear map
on A’ Sy by setting

alwr ANwg A+~ Awy) = a(wr) A afwa) A= A a(wy)

for all standard exterior monomials wq A wg A -+ A w; in /\t Sy.

If w = wy Awy A--- AN w is a standard exterior monomial gener-
ating /\t gin_(I)q, then, since « is an upper triangular matrix and since
a(gin (1)) # gin_(I), it follows that there exists a standard exterior mono-
mial u € supp(a(w)) with u > w.

Let 8 € GL,(K) with gin_(I) = in<(8I), and let fi,..., f; be a K-basis
of BI; with inc(f;) = w; and set f = fi A fa A+ A fi. We will show that
u € supp((f)) for a suitable v € B, contradicting Proposition 4.1.7.

The element v € B that we are going to construct will be of the form aé
for a suitable nonsingular diagonal matrix . If we apply such § with diagonal

dy,- -+, dy to f, then all standard exterior monomials v = v1A- - -Av; € supp(f)
for which vyvs - - - v; is the same monomial m € S;4 are mapped to the scalar
multiple m(dy,...,d,) of themselves. Thus if we take the sum of all terms

ayv1 A -+ Avg in f with vivg - --v; = m and call this sum f,,, then we have

f = fmg + Z fm7
m#mo
where fr, = awy Awa A+ Awy = aine(f) and a € K \ {0}, and get
5(f) = amo(dy, ..., dp)ine(f)+ Y m(d,...,d;) fm.
m#mg
Hence after applying a we obtain

(@) (f) = amo(da,...,dn)a(in(f)) + Z m(dy,...,di)a(fm)-

m#mgo
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Since u appears in a(in<(f)), say with coefficient ¢ € K # {0}, we see that
the coefficient of u in («ad)(f) equals

acmgo(dy, ..., dn) + Z emm(dy, ..., dy)
meWw

with ¢, € K and where W is the set of all m for which u € supp(a(fn))-
Since p = acmg + ), cy Cm is a nonzero polynomial in S and since K

is infinite, there exists dy,...,d, with p(di,...,d,) # 0. Thus if we choose §

with this diagonal and let vy be ad, then u € supp(y(f)), as desired. O

4.2.2 Borel-fixed monomial ideals

We say that a graded monomial ideal I C S is Borel-fixed if it is fixed under
the action of B. Theorem 4.2.1 theorem tells us that the generic initial ideal
of a graded ideal is Borel-fixed.

If char K = 0, then the Borel-fixed ideals can be easily characterized, as
we shall see in a moment.

Definition 4.2.2. Let I C S be a monomial ideal. Then I is called strongly
stable if one has z;(u/x;) € I for all monomials u € I and all ¢ < j such that
x; divides u.

The defining property of a strongly stable ideal needs to be checked only
for the set of monomial generators of a monomial ideal.

Lemma 4.2.3. Let I be a monomial ideal. Suppose of all u € G(I), and for
all integers 1 <14 < j < n such that x; divides u one has x;(u/x;) € I. Then
I is strongly stable.

Proof. Let v € I be a monomial and 1 <4 < j < n integers such that z;
divides v. There exists u € G(I) and a monomial w such that v = ww. If z;|u,
then x;(u/x;) € I by assumption, and so z;(v/x;) = z;(u/x;)w € I. If ;|w,
then z;(v/x;) = zu(w/z;) € 1. O

Proposition 4.2.4. (a) Let I C S be a graded ideal. Then I is a monomial
ideal, if I is Borel-fixed.

(b) Let I be a Borel-fized ideal and a the largest exponent appearing among
the monomial generators of I. If char K = 0 or char K > a, then I is strongly
stable.

(c) If I is strongly stable, then I is Borel-fized.

Proof. (a) We show that if f € I is a nonzero homogeneous polynomial,
and u € supp(f), then there exists a homogeneous polynomial g € I with
supp(g) = supp(f) \ {u}.

Suppose f = auu—i—zv;ﬁu a,v, and o € B is a diagonal matrix with diagonal
€1,C2,. .., Cn. Then a(f) = ayu(cy,.. ., cn)u—l—zv#u ayv(cy, ..., cn)v. Since K



58 4 Generic initial ideals

is infinite, we may choose ¢y, ..., ¢, such that u(cy, ..., ¢,) # v(c, ..., c,) for
all v # w. Let g = u(cy,...,cn)f — a(f). Then, indeed, we have supp(g) =
supp(f) \ {u}.

(b) Let u € I be a monomial, x; a variable which divides v and 1 <14 < j
a number. Let a € B be the upper elementary matrix which induces the linear
automorphism on S with zy — x, for k # j and z; — z; + x;.

Suppose that u = z{'x5? - - - 2% then

a(u) =2y @y - (@ + ;)" - aft = ut aai(u/zg) + -

Since I is Borel-fixed, it follows that a(u) € I, and since I is a monomial
ideal, we have supp(a(u)) C I. The assumption on the characteristic on K
and the above calculation then shows that z;(u/x;) € I.

(c) Let w € I be a monomial. Since the upper elementary matrices and
the diagonal matrices generate B and since 1 = I for any diagonal matrix 4,
it is enough to show that for 1 < i < j and o € GL,(K) with a(xy) = xy for
j # k and a(z;) = cx; + x; with ¢ € K \ {0}, one has a(u) € I.

If u=ai*x3? -z then

au) = Z (‘Z)ck

k=0

Since I is strongly stable, we see that all monomials in the support of «a(u)
belong to 1. a

There is another interesting characterization of strongly stable ideals. To
describe it, we introduce the Borel order. This is the partial order on
Mon(Sy;) defined as follows: let u,v € Mon(Sy), where u = x;, x4, - - - x;, with
il Sig S Sid andv:lemh---xjd Withjl S]g S de ‘We saythat
UZBorelU lflk S]k for k = 1,...,d.

Lemma 4.2.5. (a) Let u,v € Mon(Sy) with u >porel v. Then

(i) there exist monomials wy,...,w, € Mon(Sy) with w1 = u and w, = v,
and such that for each k there exist integers ¢ > j such that x; divides wy,
and w1 = x;(wi/x;). In particular we have

U = W1 >Borel W2 >Borel *** ~>Borel Wr = V.

(ii) u > v with respect to any monomial order > on S withxq > xg > -+ > T,.

(b) A monomial ideal I C S is strongly stable, if and only if for all d, Mon(Iy)
is an order filter in Mon(Sy) with respect to the Borel order. In other words,
if v € Mon(Iy) and u € Mon(Sy) with u >pgorel v, then u € 1.

Proof. (a)(i) Let w = x4,24, -+ x;, with 43 < g < -+ < ig and v =
Tj Tjy -+ T4, With j1 < jo < -+ < jg. Since u >porel v, there exists an integer
k such that iq = jg,...,ik+1 = Jr+1 and i < ji. It follows that i +1 <
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Jk < Jrt1 = kg1, and we set wy = u and wy = T4, ... Ty Ti 41 T4, 0 Ty
Then we = x4, +1(w1/x;, ). If wa = v, we are done. Otherwise we apply the
same argument to wo and obtain the next monomial ws. In a finite number
of steps we arrive at v and the construction of the sequence wy,ws, ..., w, is
completed.

(a)(ii) By (i) it suffices to consider the case that v = x;(u/x;) with i > j.
Then z;u = z;v > x;v, and so u > v.

(b) is an immediate consequence of (a)(i). O

Now we have

Proposition 4.2.6. Let I C S be a graded ideal and < a monomial order on
S. Then the following holds:

(a) gin (1) is strongly stable, if char K = 0.
(b) (Conca) gin_(I) = I if and only if I is Borel-fized.

Proof. (a) By Theorem 4.2.1 the ideal gin_(I) is Borel-fixed. Thus the state-
ment follows from Proposition 4.2.4.

(b) One direction of the assertion is a consequence of Theorem 4.2.1. For
the other direction we use the fact that a matrix @ whose principal minors
are all nonzero, can be written as a product 8y where g is an invertible lower
triangular matrix and v an invertible upper triangular matrix. This is an
open condition. Thus we may choose a € GL,(K) with gin_(I) = in<(al)
and which has a product presentation o = (37, as described above.

For the invertible lower triangular matrix # and any monomial v one has
B(u) = au+ --- with a € K \ {0} and with u >peye v for all v € supp(G(u))
such that v # w. It follows therefore from Lemma 4.2.5(a)(ii) that for every
homogeneous polynomial f, one has in<(3(f)) = in<(f). This implies that
in_ (1) = in(I).

Therefore,

gin (1) = inc(ByI) = inc(vI) = inc(I) = 1.

Here we used that vI = I, since by assumption, I is Borel-fixed. The last
equation holds, since I is a monomial ideal. a

Theorem 4.2.1 together with Proposition 4.2.6(b) implies

Corollary 4.2.7. Let I C S be a graded ideal and < a monomial order on S.
Then gin_(gin_ (1)) = gin_(I).

Ezample 4.2.8. Proposition 4.2.6 is false in positive characteristic. For exam-
ple, assume char K = p > 0, and consider the ideal I = (2}, 2%) C K[z, 23]

Let o € GL,,(K) be any element, say, a(z;) = a;1x1 + a;222. Then

ax}) = a(z)? = (anw1 + aigre)? = afzf + afyah.

Since the matrix with entries ay; is also nonsingular, we see that ol = I.
Hence I is Borel-fixed but not strongly stable.
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We say that a monomial ideal I C S = K|z1,...,x,] is of Borel type if
T:x=1:(x1,...,2;) for i=1,...,n.

Let u be a monomial. We denote by v;(u) be highest power of x; which
divides u. Borel type ideals can be characterized as follows:

Proposition 4.2.9. Let I C S be a monomial ideal. The following conditions
are equivalent:

(a) I is of Borel type.

(b) For each monomial u € I and all integers i,j,s with 1 < j < i <n and
s > 0 such that x|u there exists an integer t > 0 such that z;'(u/xf) € I.

(c) For each monomial w € I and all integers i,j with 1 < j < i < n there

exists an integer t > 0 such that :rjt(u/xyi(u)) el

(d) If P € Ass(S/I), then P = (z1,...,x;) for some j.
Observe that condition (b) or (c) is satisfied for all monomials u € I if

and only if it is satisfied for all w € G(I). Thus one has to check only finitely
many conditions.

Proof (of Proposition 4.2.9). (a) = (b): Let u € I be a monomial such that
x?|u for some s > 0, and let j < i. Then v = v with v € I : 23°. Condition
(a) implies that I : 27° C I : 3°. Therefore, there exists an integer ¢ > 0 such
that 2%(u/xj) = abv € 1.

(b)= (a): We will show that I : x3° C I : z5° for j < 4. This will imply
(a). Let u € I : x¢° be a monomial. Then ziu € I for some s > 0, and so (b)
implies that xgu € I for some t, that is, u € I : x5

The implication (b) = (c) is trivial. For the converse, let u € I be a
monomial such that zf|u for some s > 0, and let j < i. By (c) there ex-

ists an integer ¢ > 0 such that xﬁ(u/xf(u)) € I. Therefore, zf(u/zf) =
x.”l(“)_sxz»(u/xw(u)) el

7 7

(b) = (d): Let P € Ass(S/I); then, according to Proposition 1.3.10, there
exists a monomial v such that P = I : v. Notice that v € I, since P # S.
By Corollary 1.3.9 the ideal P is generated by a subset of the variables. Let
z; € P and let j < i. We show that x; € P. Indeed, let u = z;v. Then
u € I, and hence by condition (b) there exists an integer ¢ > 0 such that
ahv = xf(u/x;) € I. Therefore, 25 € I : v = P. Since v ¢ I it follows that
t > 0 and since P is a prime ideal we conclude then that z; € P.

(d) = (b): Consider the (unique) standard primary decomposition of I =
Mie, Qi, cf. Section 1.3. Then each Q; is of the form (z{!,... ,x?jj) and P, =
VP = (i), ,x;;) is an associated prime ideal of S/I. Thus (d) implies
that each Q; is of the form (27, ..., 25"). Write I = J N Qy,. Obviously, Q.
satisfies condition (b), and proceeding by induction on m, we may as well
assume that J satisfies condition (b). Thus if v € I and z{|u, then for any
j < i there exists ¢; and ¢3 such that 2/ (u/x$) € J and 22 (u/zf) € Q. It
follows that x!(u/x$) € I for t = max{t1,t2}. O



4.3 Extremal Betti numbers 61

Ideals of Borel type include strongly stable ideals. But they are also im-
portant because of the following result.

Theorem 4.2.10 (Bayer—Stillman). Borel-fized ideals are of Borel type.

Proof. We know from Proposition 4.2.4(a) that I is a monomial ideal. We
will show that I satisfies condition (¢) of Proposition 4.2.9. Let u € I with
a = vi(u), and let 1 < j < i. We want to find an integer ¢ such that 2 (u/xzf) €
I. If a = 0, there is nothing to show. Suppose now that a > 0. Since I
is Borel-fixed, the polynomial Y7 (¢)z%(u/zF) belongs to I (cf. the proof
of Proposition 4.2.4(c)). Thus, since I is a monomial ideal, it follows that
ah(u/xy) € I for all k with () # 0in K. Hence if char K = 0, then 2% (u/z}) €
I for all k =0,...,a. Now assume that char K = p > 0, and let a = }_, a;pt
be the p-adic expansion of a. Let j be an index such that a; # 0, and let
k = p’. Then (Z) =a; # 0 in K. This follows from the following identity

()-1()

K2

of Lucas, where k = Y, k;p’ is the p-adic expansion of k.

Therefore in all cases there exists an integer k with 1 < k < a such that
zf(u/mf) €l Seta =a—kand v = xf(u/xf) Then v;(v') = o < a.
Arguing by/induct}on on a, we may assume that there exists an integer t’
such that z% (v'/x{ ) € I. Thus if set t = t' +k, then 2 (u/z}) € I, as desired.

O

4.3 Extremal Betti numbers

We introduce the generic annihilator numbers of a graded K-algebra. These
numbers are closely related to Betti numbers. We will use this approach to
prove Theorem 4.3.17 on extremal Betti numbers by Bayer, Charalambous
and Popescu. From this we will deduce the classical results on generic initial
ideals by Bayer and Stillman.

4.3.1 Almost regular sequences and generic annihilator numbers

Let M be a finitely generated graded S-module, where S = Klx1,...,x,] is
the polynomial ring and K is an infinite field (which is the standard assump-
tion in this chapter).

Let y € S be a linear form. Then multiplication with y induces the ho-
mogeneous homomorphism M(—1) — M, m — ym. Let

0:py={me M:ym =0}
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be the submodule of M consisting of all elements of M which are annihilated
by y. Note that 0:j7 v is a graded submodule of M, and that

Ker(M(—=1) = M) = (0:a7 y)(—1).

If y is a nonzero divisor on M, then 0 :p; y = 0. Instead if we require that
0 :as v is a module of finite length, then only finitely many graded components
of 0 :ps y are nonzero. This is equivalent to saying that the multiplication map
y: M;_1 — M, is injective for all 7 > 0. We call an element y € S; with this
property an almost regular element on M.

For any finitely generated graded S-module there exists an almost regular
element. Indeed we have

Lemma 4.3.1. Let M be a finitely generated graded S-module. Then the set
U = {y € S1: y is almost regular on M}
18 a nonempty Zariski open subset of Sy.

Proof. Let N be the graded submodule of M consisting of those elements of
M which are annihilated by some power of m = (z1,...,z,). (Note that N
is just the Oth local cohomology module of M. But we will not use this fact.)
Obviously, N = J,(0:p mF). Since 0:pym C 0:pym? C --- is an ascending
sequence of submodules of M and since M is Noetherian, there exists a number
ko such that 0:py m* = 0:py mbot! = ... In other words, we have N =
0:p7 m*o. In particular, m¥* N = 0, so that N has finite length.

Let Pi,..., P be the associated prime ideals of M/N. Observe that m ¢
Ass(M/N), because otherwise there would exist an element 0 # m+N € M/N
with m(m + N) = 0. This would imply that mm € N. But then we would
have that mFo*1m = 0, and hence m € N, a contradiction.

Now since all P; # m, we have that P, NS; is a proper linear subspace
of S7. Since K is an infinite field, S; cannot be the union of finitely many
proper linear subspaces. Indeed, if the union of the linear subspaces would be
S1, then the intersection of the complements of these linear subspaces in S;
would be the empty set, contradicting Lemma 4.1.1 since these complements
are nonempty Zariski open subsets of Sj.

It follows that the set U = S; \ U, P, is nonempty. It is also a Zariski
open subset of Sy, since a finite union of linear subspaces of Sy is a Zariski
closed subset of S;.

Let y € U. Then y is a nonzero divisor on M /N since y belongs to no
associated prime ideal of M/N.

Choose any element m € 0:p7 y. Then y(m + N) =0, and so m + N = 0,
since y is a nonzero divisor on M/N. Hence we have shown that 0:p; y C N.
In particular, 0:3; y has finite length and y is almost regular on M. a

We call a sequence y = y1,...,y, with y; € S; an almost regular se-
quence on M, if y; is an almost regular element on M/(y1,...,y;—1)M for all
1=1,...,r.

As an immediate consequence of Lemma 4.3.1 we obtain
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Corollary 4.3.2. Let M be a finitely generated graded S-module. Then there
exists K-basis of Sy which is an almost reqular sequence on M.

An explicit example of an almost regular sequence is given in

Proposition 4.3.3. Let I C S be a monomial ideal of Borel type. Then
Ty X1, -+, L1 48 an almost reqular sequence on S/1.

Proof. By using an induction argument it suffices to show that x,, is almost
regular. But this is obvious since by Proposition 4.2.9(d) the element z,, does
not belong to any associated prime ideal of S/I which is different from m =
(T1,...,2p). O

We denote by A;_1(y; M) the graded module 0 :p7/(y, ...y, _1)m ¥i and call

the numbers 4 ) ;
v _ Jdimg Ai(y; M);, ifi <n,
a”(y’M){ﬁ()j(M), 1fz:n

the annihilator numbersof M with respect to the sequence y. For each i
one has «;;(y; M) = 0 for almost all j, in case y is an almost regular sequence.

We have the following vanishing and non-vanishing property for the anni-
hilator numbers.

Proposition 4.3.4. Let y a K-basis of S1 which is almost regular on M
and set a;(y; M) = 3, a;j(y; M) for all i. Then a;(y; M) = 0 if and only
1 < depth M.

Proof. Set a; = a;(y; M) for all 4. Then a1 = dimg 0 :pz/(y, ...y, )0 Yi TOr
i=1,...,nand a, = Bo(M).

Assume first that depth M > 0. Since 0 :j; y; is a submodule of M of
finite length, and since depth M > 0, we see that ap = 0 and that y; is a
nonzero divisor on M. Therefore depth M/y; M = depth M — 1. Arguing by
induction on the depth of M we may assume «;(y2, ..., yn; M/y1 M) = 0 for
i < depth M /y; M = depth M — 1. Since o; = a;—1(ya, ..., Yn; M/y1 M) for
all i, we see that a; = 0 for ¢ < depth M.

Next we want to show that «; # 0 for ¢ > t = depth M. Replacing M
by M/(y1,...,y:)M, we may assume that depth M = 0, and show (i) g # 0
and (ii) depth M/y; M = 0. The desired assertion follows then from (i) and
(ii) and by induction on n.

(i) follows from the fact that 0:p m C 0 :p7 y1 and that 0 :py m # 0 since
depth M > 0.

For the proof of (ii) assume to the contrary that depth M/y; M > 0. For
each integer i > 0 consider the map ;: yi ™M /yi M — yiM/yi™* M induced
by multiplication with y;. Clearly ; is surjective. Let a+y°M € Ker ;; then
yi1a € yzl'HM. Hence there exists b € yi M such that y1a = y1b. Let ¢ = a — b;
then ¢ € (0 :a 1) and a + y¢M = c + yi M. This shows that Keryp; is a
module of finite length for all 4.
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We will show by induction on 7 that ¢; is indeed an isomorphism for
all 7. To this end it suffices to show that Kery; = 0 for all . For i =
1, we have Kerp; C M/yi M. Since Ker; has finite length and since
depth M/y; M > 0 by assumption, it follows that Ker¢; = 0. Assume now
that ; is an isomorphism for all j < i. Then yi ' M/y} M = M/y, M, so that
depthy! ™' M/yiM > 0. Since Keryp; C 3 'M/yiM and Ker p; has finite
length, it follows that Ker ¢; = 0.

The proof of (i) shows that yo is a nonzero divisor on M /y; M and since
YTt M i M =2 M/y, M for all 4, it follows that ys is a nonzero divisor on
yiflM /yi M for all i, which by virtue of the exact sequence

0— yiM — yiflM — yiflM/yiM — 0

yields that (0 :ar y2) N yi~'M C yi M for all i. This implies that (0 :ps y2) C
MNi>o ¥iM = 0. Hence ys is a nonzero divisor on M. This is a contradiction,
since depth M = 0 by assumption. O

Next we study Koszul homology of almost regular sequences. For some
basic facts on Koszul homology we refer the reader to Appendix A.3.

A sequence y C S is a regular sequence on M if and only if H;(y; M) =0
for all ¢ > 0, see Theorem A.3.4. Thus the following result is not surprising.

Proposition 4.3.5. Let M be a finitely generated graded S-module, and
Y = Y1,--.,Yr a sequence of elements in Sy. The following conditions are
equivalent:

(a) y is an almost regular sequence on M.
(b) Hj(y1,-..,vys; M) has finite length for all j >0 and all i =1,...,7.
(¢) Hi(y1,---,yi; M) has finite length for alli=1,...,r.

Proof. (a) = (b): We prove the assertion by induction on i. We have
H;(yi; M) =0 for j > 1 and Hi(y1; M) = 0:p7 y1. This module is of finite
length by assumption.

Now let ¢ > 1. Then there is the long exact sequence of graded Koszul
homology

= Hj(yr, - yi-s M) — Hjva(y1s -,y M) — Hy(ya, - - M)(—1) —
c—= Hi(y1, - yi-1; M) — Hi(yr, ..,y M) — Aii(y; M)(=1) — 0.
Since A;_1(y; M) has finite length and since by induction hypothesis the mod-
ules H;(y1,...,yi—1; M) have finite length for all j > 0, the exact sequence
implies that also H,(y1,...,y;; M) has finite length for all j > 0.
(b) = (c) is trivial.
(c) = (a): the beginning of the above exact sequence

Hi(y1,- - yi—s M) — Hi(yr, .. yis M) — A (y; M)(=1) — 0

shows that all the annihilators A;_;(y; M) have finite length. O
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The length of the annihilators A4;_1(y; M) may depend on the almost
regular sequence y. However, we have

Theorem 4.3.6. Let I C S be a graded ideal. With each v = (g;5) € GL,(K)
we associate the sequence y = y(x) with y; = Y i, gijz; for j = 1,...,n.
Then there exists a nonempty Zariski open subset U C GL,,(K) such that ~(x)
is almost reqular for all v € U. Moreover, the open set U has the property that
dimg A;—1(v(x); S/1); = dimg Aj_1 (T, Tpo1,..., 2155/ gin.___(1)); for all
i andj and ally € U.

The following lemma is crucial for the proof of Theorem 4.3.6, and it is
the step in the chain of arguments where the reverse lexicographic order is
indispensable.

Lemma 4.3.7. Let I C S be a graded ideal. Then for all i one has
ine . (I, zi41,-.-,2n) = (ine, ., (1), Tit1,-..,2Tn), and
ine,, (L, @it1, ..o, 2n)is @) = (ine,, (1), Tit1, - Tn)is T4

Proof. We only prove the statements for the colon ideals. That the left-hand
side is contained in the right-hand side is easy to see and true not only for
the reverse lexicographic order but for any other monomial order as well.
For the converse inclusion it suffices to show that each monomial u in
(ine,.,(I), Zit1,...,@n):s x; belongs to ine _ (I, Ti41,...,%n):5x;). We may
assume that no x; with j > ¢ divides u. Then there exists a homogeneous
element f € I with uz; = inc_ (f). Because we use the reverse lexicographic
order it follows that f = cuz; +h with h € (a;,...,2,) and ¢ € K\ {0}. Write
h=gx;+- -+ gnzn, and set f1 = cu+g;. Then frz; € (I,zi41,...,z,) and
inc...(f1) = u. This shows that u € inc (I, Zi41,-..,Tn)is Ts)- O

Before giving the proof of Theorem 4.3.6 we need the following technical
result.

Lemma 4.3.8. Let U C GL(n; K) be a Zariski open subset, and o € GL(n; K).
We set UL ={p tipeU} and Uo = {po: ¢ €U}. Then U~ and Uo are
Zariski open sets in GL(n; K).

Proof. Let ¢ = (x;;) be an n x n matrix of indeterminates. We write
U = GL,(K) \ A where A is the common set of zeroes of the polynomials
f1(€), ..., fm(&) in the variables z;;. Let D(f;) = {¢ € GL,(K): fi(v) # 0}.
Then U is the union of the Zariski open sets D(f;). We let g;(£) = fi(€éo71);
then g;(¢o) = fi(p) for all ¢ € GL,,(K). Therefore, po € D(g;) if and only if
¢ € D(fi), and so D(g;) = D(fi)o. Thus Uo = J;~, D(fi)o = U2, D(g:) is
Zariski open.

Since U = %, D(f;), it follows that U~' = X D(f;)~*. It suffices
therefore to show that each D(f;)~! is Zariski open. Let n = ((—1)"74,;/4),
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where ¢ = det(§) and d;; is the minor of { which is obtained by skipping the jth
column and ith row. Suppose d = deg f;. Then g;(¢) = §%f;(n) is a polynomial
in the variables ;;, and for each ¢ € GL,(K) we have g;(¢~1) = cfi(p) with
c = det(¢)~? # 0. Therefore, 9~! € D(g;) if and only if p € D(f;). In other
words, D(f;)~! = D(g;) is Zariski open. O

Proof (of Theorem 4.3.6). By Theorem 4.1.2 there exists a nonempty Zariski
open set U’ C GL,(K) such that gin__ (1) = inc,, (¢I) for all ¢ € U’. Let
o € GL,(K) be the automorphism with o(z;) = 2,41 for i = 1,...,n. The
set U = {p~lo: p € U} C GL,(K) is a nonempty Zariski open subset of
GL,(K), see Lemma 4.3.8.

We claim that U satisfies the conditions of the theorem. To see this we
first show that

dlIIlK Ai_l('y(x); S/I)] = dlmK Ai_l(l’n,l’n_l, ey Iy S/ gin<m(1))j

for all ¢ and j and all v € U. In other words, we show that A;_1(y(x); S/I) and
Ai1(0(x); S/ gin. (1)) have the same Hilbert function for all v € U. (See
Chapter 6 for the definition and basic properties of Hilbert functions.) The
equality of the Hilbert functions then also implies that v(x) is almost regular
for all v € U, because by Theorem 4.2.10 and Proposition 4.3.3, o(x) is almost
regular on S/ gin_ _ (I) from which it follows that A; (o (x); S/ gin_ _ (1))
and hence also A;_1(y(x); S/I) has finite length for all i.

In order to prove the equality of the Hilbert functions, let v = ¢ loc € U
and set y; = y(x;) for i = 1,...,n. Then ¢(y;) = xp—i41 for i =1,...,n, and
hence

S/(I7yla s 7y1) = S/(@(I)axnaxn—la s axn—i—i-l) for all .

In particular, S/(I,y1,...,v:) and S/(p(I), Zn, Tn-1,.-.,Tn—sitr1) have the
same Hilbert function for all ¢. By Corollary 6.1.5 the Hilbert functions of
S/(e(I), Tn, Tn-1,.-.,Tn—it1) and S/inc, _ (©(I),Tn,Tn-1,.-.,Tn_it+1) CO-
incide as well. Thus, since ¢ € U’, we conclude from Lemma 4.3.7 that
S/, y1,...,y:) and S/(gin_ _ (I),Zn,Tp_1,...,2Tn_i+1) have the same Hil-
bert function for all i.

Since the Hilbert function is additive on short exact sequences, the exact
sequence

0= Aia(v(x); 5/1) = S/(Lyr, -, yi1)(=1)
— S/(I7y17-~-ayi71) — S/(I7y17...,yi> — 07

implies that the Hilbert function A;_1(y(x); S/I) is determined by the Hilbert
function of S/(I,y1,...,y;—1) and that of S/(I,y1,...,y;). Correspondingly
the Hilbert function of A;_1(o(x); S/ gin_ _ (I)) is determined by those of

S/(gin. (1), Zn,Tn—1,...,2n_j41) for j=i-1,i
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Hence our above considerations imply that
Ai1(v(x); S/I) and  A;_1(o(x);S/gin_ (1))
have the same Hilbert function, as desired. a

Definition 4.3.9. A sequence y = (x) with v € U and U C GL,(K) as in
Theorem 4.3.6 is called a generic sequence on S/1.

Since the annihilator number does not depend on the particular chosen
generic sequence we set o;;(S/I) = a;;(y; S/I) for all i and j, where y is
a generic sequence on S/I. The numbers «;;(S/I) are called the generic
annihilator numbers of S/T.

Remark 4.3.10. Let M be a finitely generated graded S-module. With the
same arguments as used in the proof of Theorem 4.3.6 one can show that
there exists a nonempty Zariski open subset U C GL(K) such that v(x) is
almost regular on M for all v € U and such that «;;(y(x); M) is independent
of v € U, and hence will be denoted by «;;(M). Thus generic sequences
and generic annihilator numbers can also be defined for modules. For this
one just has to extend the concept of generic initial ideals to generic initial
submodules. This can be done in an obvious way. We omit the details, since
in this monograph we do not consider Grébner basis theory for modules.

Of course we cannot expect that each K-basis of S; which is almost reg-
ular on a graded S-module M is also generic for this module. Indeed, if
I C S is a graded ideal such that S/I has Krull dimension 0, then any
K-basis of Sy is an almost regular sequence on S/I, since £(S/I) < oc.
On the other hand, not all K-bases of S; are generic sequences. For in-
stance, if we choose the ideal I = (21,2323, 23 + 23, 23) in S = K[z1, 72, x3].
Then ¢((I:sz1)/I) = ¢((I:sz2)/I) = 12 and ¢((I:sx3)/I) = 11, while
(((gin.,  (I):sx3)/gin (1)) = 10, as can be easily checked with CoCoA.
This shows that x1, 22, 23 and none of its permutations are generic on S/I.

The following statement is almost tautological but of crucial importance.
Proposition 4.3.11. Let I C S be a graded ideal. Then
i (5/1) = aij(S/ ging, (I)).

Proof. Let i < n. According to the definition of the generic annihilator num-
bers we have a;;(S/I) = dimg A;(2p, Tn—1,...,21;5/gin___ (1)), and

a;;(S/gin. _(I)) = dimg Ai(2n, Tn_1,...,21;5/gin___ (gin.__ (1)))
= dimg Ai(2n, Tp_1,..., 2155/ gin____(I)).

The last equation follows from Corollary 4.2.7. Hence the conclusion. 0O
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4.3.2 Annihilator numbers and Betti numbers

Annihilator numbers of almost regular sequences and Betti numbers are in-
timately related to each other. The purpose of this subsection is to describe
this relationship.

We shall use the convention that

i\ [0, ifi# -1,
-1/ 11, ifi=-1
The first basic fact is given in

Proposition 4.3.12. Let M be a graded S-module and let'y = y1,...,y, be
a K-basis of S1 which is almost reqular on M. Then

n—i
k-1
Biiti (M Z (n >ozkj(y; M) forall ¢>0 andall j.
k=0
Proof. After a suitable change of coordinates we may assume that z1, o, ..., T,

is almost regular on M.

To simplify notation we set H;(r); = H;(x1,...,z,;M); and h;;(r) =
dimg H;(r);. Furthermore we set A(r); = A.(x; M);, ar; = dimg A(r); and
Bij = Bij(M).

For ¢« = 0 the assertion is trivially true. Now let ¢ > 0. We will show by
induction on ¢ that

— —k—-1
hiij(r §Z( i1 )akj for all 7. (4.1)

Since 5 i+j = hii+j(n), this will then prove the proposition.
For ¢ = 1, the claim is that hy 14,(r) < Z;;é ay;. However, this follows
easily by induction on r from the exact sequences

Hl(’l" — 1)1+j e Hl(’f’)1+]‘ I A(’l" - 1)J —0

which yield the inequalities hi 14;(r) < hi145(r — 1) + ap_1 ;.
Now let ¢ > 1. We proceed by induction on r. If » < ¢, then h; ;4,(r) =0,
and the assertion is trivial. So now let r > 4. Then the exact sequence

Hi(r —1)ivj — Hi(r)iv; — Hi—1(r — 1)iy 1
and the induction hypothesis imply

Riivi(r) < hiipj(r —1) +hi—1ip5-1(r — 1)

r—i—1 r—1

r—2—~F r—2—=~k
<2 < i1 >0""j+z< i—2 )a’“j

k=0 k=0
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S r—2—k r—2—%k
20D ) iy e e

k=0

77“2_1‘ r—k—1 o
- i—1 ki
k=0
O

Chapter 7 discusses the conditions under which the inequalities in Propo-
sition 4.3.12 become equalities.

Definition 4.3.13. Let M be a finitely generated graded S-module and let y
be a K-basis of S; which is almost regular on M. Let o;; be the annihilator
numbers of M with respect to y and 3;; be the graded Betti numbers of M.

(a) An annihilator number «;; # 0 is called extremal if ag, = 0 for all pairs
(k,0) # (i,7) with k < i and £ > j.

(b) A Betti number f; ,1; # 0 is called extremal if 3y 4, = 0 for all pairs
(k,£) # (i,7) with k >4 and ¢ > j.

Remark 4.3.14. We define a partial order on the set of pairs of integers by
setting (¢,4) < (k,0) if ¢ <k and j <. Let B, s,45, (M), ..., B, i+, (M) be
the extremal Betti numbers of M. Then §; ;1 ;(M) = 0 for all (¢, j) such that
(4,7) € (ig,jg) for k = 1,...,r. In particular, if m = max{iy + ji: k =
1,...,r}, then 8;,,(M) is an extremal Betti number for all ¢ such that
Bim (M) # 0.

Figure 4.1 displays the a-diagram and Betti diagram of a finitely generated
graded S-module. The entry with coordinates (¢,7) in the a-diagram is the
generic annihilator number «;;. The outside corners of the dashed line give
the positions of the extremal annihilator numbers.

Similarly, the entry with coordinates (4,j) in the Betti diagram is the
graded Betti number ; ;+;. Again the outside corners of the dashed line give
the positions of the extremal Betti numbers.

depth i i projdim

T : : T

| . |

I : I

Lo -
I ; : I
il RRRRREN gl |
| O j ﬁii+] |
I I
L——1 r——-

S reg reg f————— -

Fig. 4.1. An a-diagram and a Betti diagram

The following result is of central importance.
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Theorem 4.3.15. Let M be a graded S-module and let y be a K-basis of
S1 which is almost regular on M. Let oy; be the annihilator numbers of M
with respect to'y and (3;; be the graded Betti numbers of M. Then B;;4; is
an extremal Betti number of M if and only if cu—;; is an extremal generic
annihilator number of M. Moreover, if the equivalent conditions hold, then

6i,i+j = Qp_j,j-

Proof. We adopt the simplified notation introduced in the proof of Proposi-
tion 4.3.12, and first treat the case ¢ > 1.

Let r € [n]. Just as for Betti numbers we say that h; ;4 ;(r) is extremal if
hiiv;(r) # 0 and hg ge(r) = 0 for all (k,£) # (4,7) with k > ¢ and £ > j.

The proof of the theorem for i > 1 is based on the following two observa-
tions:

(1) hi,igj(r) is extremal for r > 2 if and only if h;—1 ;—14;(r—1) is extremal,
and if the equivalent conditions hold, then h; ;4 ;(r) = hi—1,—14;(r — 1).

(ii) h1,14;(r) is extremal if and only if a1 ; is extremal, and if the equiv-
alent conditions hold, then h1,14;(r) = ar—1,;.

Assuming (i) and (ii) and recalling that 3;;4+; = h;1;(n) it follows for
i > 1 that §; ;4 is extremal if and only if hq 14;(n — 7+ 1) is extremal which
in turn is equivalent to the condition that o,,_; ; is extremal. Furthermore,
(i) and (ii) imply that in this case B i+; = @n—i j, as desired.

Proof of (i): the long exact sequence of Koszul homology

- — Hp(r—1) = Hg(r) - He—1(r — 1)(=1) - Hg—1(r — 1) —
induces for each k£ and ¢ the exact sequence of vector spaces

- = Hp(r = Dpge = Hi(r)pgpe — (4.2)
Hia(r = D140 = H1(r = 1) (e—1) 4041

Suppose that h;_1;_14;(r — 1) is extremal. Then H; 1(r —1)_1)4j41 = 0
and H;_1(r — 1)—1)4+; # 0. Therefore (4.2) implies that H;(r);y; # 0. Next
suppose that (k,¢) # (i,7) and that £k > ¢ and ¢ > j. Then Hy(r — 1)g4¢ =0
and Hig_1(r — 1)g—14¢ = 0, and hence (4.2) implies that Hy(r)g4¢ = 0. This
shows that h;;4;(r) is extremal.

Conversely, assume h; ;4;(r) is extremal. Then (4.2) implies that

Hy—1(r = Dg—146 = Hy—1(r = 1)(k—1)4041 s injective (4.3)

forall (k—1,)#A(i—1,j) withk—1>i—1and ¢ > j.

Since Hy_1(r — 1) has finite length, we have Hy_1(r —1)—1)4¢41 = 0 for
£> 0. Then (4.3) implies that also Hg_1(r —1)(;—1)+¢ = 0 in the range where
the map is injective. Repeating this argument we conclude by induction that
Hy_1(r — 1)g_14¢ =0 for all (k—1,¢) # (i —1,j) with k-1 >¢—1 and
¢ > j. In particular, Hy(r — 1);4; = 0 and H;_1(r — 1)_1)4j41 = 0, so that
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Hi 1(r—1)i-14; ~ Hi(r)irj # 0, by (4.2). This shows that h; 1, ;_1)4;(r—1)
is extremal.
Proof of (ii): Let N be a graded S-module of finite length. We set

[ max{j: N; #0}, if N #0,
S(N)_{oo, it N =0,

and set s; = s(A(t — 1)), t; = max{s(H;(4)) — j: j > 1} and u; =
max{s(H;(i)) — j: j > 2}. With these numbers so defined we have

(1) ay_1,; is extremal if and only if j = s, and s; < s, for ¢ < r, and
(2) hi,14;(r) is extremal if and only if j = ¢, and u, <t,.

‘We will show that
u; =t;—1 for i>1, and ¢; =max{sy,...,s;} for i>1. (4.4)

Now if we suppose that c,_;; is extremal, then (1) and (4.4) imply that
j = s =t,, and that u, = t,_1 < t,. Hence hq 14;(r) is extremal, by (2).
Conversely, if we suppose that hi 14;(7) is extremal, then (2) and (4.4) imply
that j = t, = s, and that s; < s, for ¢ < r. Hence a,_1 ; is extremal, by (1).

Finally, considering the equivalent conditions (1) and (2) and the exact
sequence

s Hi(r —1)1ge, — Hi(r)144, — A(r —1)5, — 0,

we see that Hi(r—1)14¢, = 0since t,_1 < t,. It follow that hq,14;(r) = ar_1,;
for j =t, = s,, as desired.

It remains to prove (4.4): In order to show that u; = t;_1 for i > 1, we
consider the exact sequence (4.2) with = ¢ > 1 and kK = j > 2. Since
for ¢ > t;—1 we have H;(i — 1);1¢ = H;—1(i — 1)j_14¢ = 0 it follows from
(4.2) that H;(i)j4+¢ = 0. This shows that u; < t;_1. For £ = t;_; we have
H;_1(i—1)j_14¢,_, #0for some j > 2and H;_1(¢—1);_14¢_,+1 = 0. Hence
(4.2) implies that H;(i);4¢, , 7 O for this j. This shows that u; > ¢;_1.

In order to complete the proof of (4.4) we show by induction on 4 that
t; = max{t;_1,s;}, where we set tg = —oo. For ¢ = 1 we have H;(1) = 0 for
j>1and Hi(1) ~ A(0)(—1). Therefore, t; = s7.

Now let 4 > 1. Our induction hypothesis implies that

max{s1,...,8;} = max{t;_1,s;} = max{u;,$;},

and by definition ¢; = max{u;,c — 1} where ¢ = s(H(i)).
It follows from the exact sequence

that s; <c¢—1.If s; = ¢ — 1, then t; = max{u;, s;}, as desired. On the other
hand, if s; < ¢ — 1, then (4.5) yields the exact sequence
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Hy(i—1). — Hi(i)e — 0

with Hq(i). # 0. This implies that H; (i — 1), # 0. It follows that s; < c¢—1 <
t;—1 = u;, and hence max{u;, s;} = u; = max{u;,c — 1} = t;, as desired.

At last we consider the case ¢ = 0. If 3y; is an extremal Betti number of
M, then M = N @ S(—j)i with ; ;4¢(N) = 0 for all i and ¢ > j. By what
we have already proved in case i > 0, if follows that ag(N) = 0 for k < n
and £ > j. Since agp = ape(M) = Oékg(N) for k < n, we conclude that ag, =0
for (k, ) # (n,j) with K <n and £ > j. Moreover since ay,; = Bo; # 0, we see
that a,; is an extremal generic annihilator number.

Conversely, if we assume that o,,; is an extremal generic annihilator num-
ber. Then agy = 0 for (k,¢) # (n,j) with k& < n and ¢ > j. Therefore,
Proposition 4.3.12 implies that S j4+¢ = 0 for (k,¢) # (0,7) with £ > 0 and
£ > j. Since Bo; = an; # 0, it follows that Gy; is an extremal Betti number.

O

Theorem 4.3.15 has the following obvious consequence.

Corollary 4.3.16. For any two almost reqular sequences on M which form a
K-basis of S1, the extremal annihilator numbers coincide.

We have seen in Chapter 3 that for a graded ideal I C S and any monomial
order < on S one has 3;;(I) < f3;;(in<(I)) for all i and j, and indeed in most of
the cases the inequalities are strict. However, we will see in a moment that the
extremal Betti numbers remain unchanged when passing from I to gin____(I).
In fact, combining Theorem 4.3.15 and Proposition 4.3.11 we immediately
obtain the following important result:

Theorem 4.3.17 (Bayer, Charalambous, Popescu). Let I C S be a
graded ideal. Then for any two numbers i,j € N one has:

(a) Bi,itj (1) is extremal if and only if B; 1 ;(gin. (1)) is extremal;
(b) if Biivj(I) is extremal, then By y;(I) = Biivj(gin. _ (I)).

This theorem yields at once the following fundamental results
Corollary 4.3.18 (Bayer, Stillman). Let I C S be a graded ideal. Then

(a) projdim(/) = projdim(gin_ _ (1));

(b) depth(S/I) = depth(S/gin_ _ (I));

(c) S/I is Cohen—Macaulay if and only if S/ gin___ (I) is Cohen-Macaulay;
(d) reg(I) = reg(gin. _ (I)).

Problems

4.1. Eliahou and Kervaire introduced stable ideals, a class of ideals which
contains the class of strongly stable ideals but still shares most of the nice
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properties of this smaller class. The definition is this: let © € S be a monomial.
We denote by m(u) the maximal number j such that z;|u. Then a monomial
ideal I C S is called a stable ideal if for all monomials u € I and all i < m(u)
one has z;(u/xy ) € 1.

Suppose that u € G(I) and all i < m(u) one has x;(u/xp,(,)) € I. Show
that I is stable.

4.2. A monomial ideal I C S is called a lexsegment ideal if for all monomials
u € I and all monomials v with degv = degu and v > u one has v € I.
Show that lexsegment ideals are strongly stable, and give an example of an
ideal which is strongly stable but not lexsegment and an example of an ideal
which is stable but not strongly stable, as well as an example which is of Borel
type but not stable.

4.3. Let I and J be monomial ideals of Borel type. Show that I.J is of Borel
type.

4.4. Let I = (22,y?) C K[z,y]. Compute gin(I) for a base field of character-
istic 2 and of characteristic # 2.

4.5. We say that a graded ideal I C S generated in degree d has a linear
resolution if f;;4; = 0 for all j # d. Show that B;;1;(I) = B4, (gin(l)) if T

has a linear resolution.

4.6. Let I C S be a graded ideal such that S/I is Cohen—Macaulay. Then
show that I has only one extremal Betti number.

4.7. Find an example of a graded ideal I C S such that I has exactly two
extremal Betti numbers.

4.8. Let I C S be a strongly stable ideal. Compute the annihilator numbers
of S/I with respect to the almost regular sequence ,,, Tn—1,..., 1.

Notes

The existence of generic initial ideals and their invariance under the action
of the Borel subgroup of GL,,(K) was first proved in characteristic 0 by Gal-
ligo [Gal74], and later by Bayer and Stillman [BS87b] for any order and any
characteristic. In [BS87b] it is shown that Borel fixed ideals are strongly sta-
ble. The nature of Borel fixed ideals in positive characteristic was described
by Pardue [Par94].

The remarkable result of Bayer and Stillman [BS87a], which says that a
graded ideal and its generic initial ideal have the same regularity, has been
nicely extended by Bayer, Charalambous and S. Popescu [BCP99] by show-
ing that the position as well as the values of the extremal Betti numbers are
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preserved under the taking of generic initial ideals. For the proof of this re-
sult we followed the treatment given [AHO00] by Aramova and Herzog, which
uses generic annihilator numbers, since the same kind of arguments apply
to exterior algebraic shifting which is discussed in Chapter 11. Comprehen-
sive accounts of generic initial ideals are given in the book by Eisenbud [Eis95,
Chapter 15] and in the article by Green [Gre98]. Additional interesting aspects
of generic initial ideals can be found in the articles by Conca [Con04], Conca,
Herzog and Hibi [CHH04] and Bigatti, Conca and Robbiano [BCRO05]. The
concept of almost regular sequences was first introduced by Schenzel, Trung
and Tu Cuong in [STT78] under the name of “filter regular sequences”.
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The exterior algebra

In this chapter we consider graded modules over the exterior algebra. In par-
ticular, the exterior face ring of a simplicial complex is studied. Alexander
duality is introduced as a special case of a more general duality for graded
modules. Furthermore, the theory of Grobner bases over the exterior algebra
will be developed.

5.1 Graded modules over the exterior algebra

5.1.1 Basic concepts

Let K be a field and V' a finite-dimensional K-vector space. We denote E
the exterior algebra of V. The algebra FE is a graded K-algebra with graded
components E; = \"V.

As a K-algebra F is standard graded with defining relations

vAv=0 for veV =E. (5.1)
We fix a K-basis ey, es,...,e, of V. Then for all i,j € [n] one has
0= (ei—&—ej)/\(ei—i—ej) =e Ne;+e;Nej+ejNe;+ejNej
= ei/\ej—i—ej/\ei,
and so e; A ej = —ej; A e;. From this fact one deduces that the elements
ep = ¢, Nej, N+ Aej, with F = {ji < jp <--- < ji} C [n] span the
K-vector space E. By using that e; A--- Ae, # 0, we see that the elements

er are linearly independent. Here we set ep = 1, if I = (). In particular we
see that F; =0 for i < 0 and ¢ > n, and that dimg F; = (T;) fori=0,...,n.

The identity e; A e; = —e; A e; can be easily generalized to obtain
(—=1)°FSepyq, if FNG =0
A = ’ . ’ 5.2
er A ea { 0, otherwise, (5.2)
J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 75
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where o(F,G) = |{(i,j): t € F, j € G, i > j}|.

The elements erp with F C [n] are called the monomials of E. There
are only finitely many monomials in E, namely 2". An arbitrary element
[ € E is a unique K-linear combination f = ) arep of monomials. We
call supp(f) = {er: ar # 0} the support of f. The element f is called
homogeneous of degree i, if f € E;. Since E is graded, f has a unique
presentation f = Y. f; with f; € E;. The summands f; are called the
homogeneous components of f.

Let f and g be homogeneous elements in E. By using (5.2) one obtains

fAg=(—1)kEfdesog n g (5.3)

Definition 5.1.1. A finite-dimensional K-vector space M is called a graded
FE-module, if

(1) M = &P, M; is a direct sum of K-vector spaces M;;

(2) M is a left and right F-module;

(3) for all integers 4 and j and all f € E; and « € M, one has fz € M;; and
fr=(-1)¥zf.

We note that for a graded E-module M we have (fz)g = f(xg) for all
f,g € E and all x € M. In other words M is a bimodule.

Let M and N be graded E-modules. A map ¢: M — N with o(fz) =
fo(z) for all f € E and all x € M such that ¢(M;) C N, for all j is called a
homogeneous E-module homomorphism of degree i. For example, let ¢ € E
be homogeneous of degree i. Then the map ¢,: E — E with ¢, (b) =bAa is
homogeneous of degree i.

We denote by G the category of graded E-modules whose morphisms are
the homogeneous F-module homomorphisms of degree 0. The reader who is
not so familiar with the language of categories and functors is referred to
Appendix A.1, where the basic concepts are explained as much as is needed
here and in the following subsections.

Let N be a graded E-module. A subset M C N is called a graded sub-
module of N, if M is a graded E-module and the inclusion map is a morphism
in G. If M C N is a graded submodule, then the graded K-vector space N/M
inherits a natural structure as a graded E-module.

A graded submodule of E is called a graded ideal of E. Let J C E be a
graded ideal. Since J is a two-sided ideal, the graded E-module E/J admits
a natural structure as a graded K-algebra.

Homogeneous elements f1,..., f, € J are called a set of generators
of J, if for each (homogeneous) element f € J, there exist (homogeneous)
elements g; € E such that f = Y" | g; A f;. (Because of the sign rule (3) in
Definition 5.1.1 we need not to distinguish between right and left generators.)

5.1.2 The exterior face ring of a simplicial complex

Similarly as in the case of the polynomial ring we define monomial ideals in the
exterior algebra, and introduce the exterior face ring of a simplicial complex,
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in complete analogy to the Stanley—Reisner ring, as a factor ring of a suitable
monomial ideal.

A graded ideal J C F is called a monomial ideal if J is generated by
monomials. As for monomial ideals in the polynomial ring one shows that
an ideal J C F is a monomial ideal, if and only if the following condition is
satisfied: f € J < supp(f) C J.

Definition 5.1.2. Let A be a simplicial complex on the vertex set [n], and let
Ja C E be the monomial ideal generated by the monomials er with F' ¢ A.
The K-algebra K{A} = E/.JA is called the exterior face ring of A.

Since J, is a graded ideal, the exterior face ring K{A} is a graded K-
algebra, and one has

dimg K{A}; = fi-1 for i=0,...,d—1,

where f_; =1 and (fo, f1,---, fa—1) is the f-vector of A. Indeed, the residue
classes of the monomials ep with F' € A form a K-basis of K{A}.

5.1.3 Duality

We will show that E is an injective object in G.
Let M, N € G, and let

*Hompg (M, N) = @) Homg(M, N);

K3

where Hompg (M, N); is the set of homogeneous E-module homomorphisms
@: M — N of degree i. Then *Hompg(M,N) is a graded E-module with
left and right E-module structure defined as follows: for f € E and ¢ €
*Hompg (M, N) we set (fo)(x) = o(xf) and (pf)(z) = p(z)f for all z € M.

We check condition (3) in Definition 5.1.1: let f € E be homogeneous of
degree i and ¢ € *Homp(M, N) be homogeneous of degree j. Then for € M},
we have

(fo)a) = p(af) = ()" p(fz) = (~1)* fe(z) = (1) p(a) f
= (=D (pf)(2).

We set MY = *Hompg(M, E) and M* = *Hompg (M, K(—n)). Then M* is
a graded E-module with graded components

(M*); = Homg (M, —;, K) for all j.

The left E-module structure of M* is defined similarly as for *“Hompg (M, N),
while the right multiplication we define by the equation

of =(-1)"fp for @e(M*); and fe€E.



78 5 The exterior algebra

It is clear that M — M™ is an exact functor.

Let ¢ € MY and € M. Then ¢(z) = > p, or(z)er with pr(z) € K
for all F' C [n]. Thus for each F' C [n] we obtain a K-linear map ¢p: M —
Ke[n] = K(—n)

As the main result of this section we have

Theorem 5.1.3. The map MY — M*, ¢ @y, is a functorial isomorphism
of graded E-modules.

Proof. For a subset F' C [n] we set F' = [n]\ F. We first consider the map
a: FE — E* of graded K-vector spaces given by

1R, G =,
aler)(eq) = {0, otherwise.

For each G C [n] we define the element ef, € E* by

1, f G=F,
0, otherwise.

ciler) = {

The elements ef, form a K-basis of E* (namely the dual basis of the basis eq
with G C [n]), and we have a(ep) = (fl)a(F’F)e};. This shows that « is an
isomorphism of graded K-vector spaces.

We observe that

o _ [ (=)@ e, it H C G,
CHCG = {0, otherwise.

Next we notice that « is a morphism in the category G of graded E-modules.
Indeed for all F,G, H C [n] we have

eHa(eF) _ (_1)U(F,F)eHe*F — (_1)U(F,F)—i-U((FUH),H)(:;(kFUH)7
if HNF =0, and ega(ep) =0if HNF # 0.
On the other hand, we have

aleg Aep) = (1) afeyur) = (—1)0(H"F)+g((HUF)’HUF)GFHUF)7

ifHNF =0, and a(eg ANep) =0if HNEF # 0.
Since (em/\eH)/\eF :em/\(eH/\eF) we get

(_l)a(F,F)—i-a((FUH),H) _ (_l)a(H,F)—l-a((HuF),HUF).

Thus the above calculations show that ega(erp) = a(emy A ep), so that
a:E — E* is an F-module homomorphism. Since a respects the grading
and is bijective, it is indeed an isomorphism of graded F-modules.

Consider the functorial homomorphism
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¢ : "Hompg (M, *Homg (F, K)) — *Homg (M, K)

which is defined as ¢(p)(z) = p(z)(1) for all p € *Hompg (M, *Homg (E, K))
and all z € M. Note that v is an isomorphism of graded E-modules. Thus we
obtain the desired isomorphism MY — M* with ¢ — ¢, as the composition
of the isomorphisms

¥

S, Homp (M, E7) —“— *Homy (M, K).

*Hompg (M, E)
O

Corollary 5.1.4. (a) The functor M — MV is contravariant and ezact. In
particular, E is an injective object in G.
(b) For all M € G one has (i) (MY)¥V = M, and (ii) dimg M = dimg M.

Proof. All statements follow from Theorem 5.1.3 and the fact that the functor
M — M* obviously has all the desired properties. a

We apply the duality functor M — MY to face rings. Recall that for a
simplicial complex A we denote by AY the Alexander dual of A.

Proposition 5.1.5. Let A be a simplicial complex on the vertex set [n]. Then
one has

(a) 0:g Ja = Jav;
(b) K{A}Y = Jav and (Ja)V = K{AV}.

Proof. (a) Since Ja is a monomial ideal, it follows that 0:g Ja is again a
monomial ideal. Then by using (5.2) we see that ep € 0:5 Ja if and only if
FNG#0Qfor all G ¢ A. This is the case if and only if G ¢ [n] \ F for all
G ¢ A. This is equivalent to saying that [n] \ F' € A, which in turn implies
that FF ¢ AV. Hence er € 0:p Ja if and only if e € Jav. This yields the
desired conclusion.

(b) We dualize the exact sequence

0—Jap— E— K{A} —0,
and obtain by Corollary 5.1.4 the exact sequence
0 — K{A}Y — EY — (Ja)¥ — 0.

Since the homogeneous elements of EV are given by right multiplication with

homogeneous elements in E, EY can be identified with F and K{A}" with

0: Ja. Thus all assertions follow from (a) and the dualized exact sequence.
O
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5.1.4 Simplicial homology

Let M € G, where as before G is the category of graded E-modules, and let
v € V = Ej. Since v A v = 0, left multiplication by v on M yields a finite
complex of finitely generated K-vector spaces

(M,v): --- v M;_4 v M; v M v ...

We denote the ith cohomology of this complex by H®(M,v). Notice that
H(M,v) =&, H'(M,v) is again an object in G. Indeed,
o 0 MU

H(M,v) = Y

It is clear that a short exact sequence
0—U—M-—N —Q0,

of finitely generated graded E-modules induces the long exact cohomology
sequence

- — HY(U,v) — H(M,v) — H'(N,v) — H"(U,v) — -

By taking the K-dual of the complex (M, v) we obtain a complex of K-vector
spaces

(M,v)* - —2— Homg(Miy1, K) —— Hompg (M;, K)

Y Homg (M1, K) —>—

whose ith homology we denote by H;(M,v).
Obviously there exist functorial isomorphisms

Homp (H'(M,v), K) = H;(M,v), Homg (H;(M,v),K) = H'(M,v). (5.4)
We have the following duality result.
Proposition 5.1.6. Let M be a graded E-module. Then
HY (MY, v) = H,_i(M,v) forall i.
Proof. Consider the following diagram
(MY)i1 ——— Homp(Mp—i11, K)
vl (—1)"*%{
(MY); —*— Homg (M, i, K),

where the horizontal maps are the graded components of the isomorphism
given in Theorem 5.1.3. This diagram is commutative (and this implies the
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assertion of the proposition). Indeed, let ¢ € (M");_1 and x € M,,_;11. Then
a;—1(p)(x) = ¢, where p(z) = cyep,) with ¢, € K. It follows that

(=D)" " (i1 (9) (@) = (=1)" i (@) (vr) = (=1)" " cua,

for any x € M,,_;. On the other hand, a;(ve)(z) = ¢y, since (vp)(x) = p(zv).
Now since ¢(zv) = o((—1)"""wz) = (=1)""‘p(vr), we see that (—1)""c,, =
Czv, and this yields the desired conclusion. O

n—i

Definition 5.1.7. Let A be a simplicial complex on [n], and let e = e; +
ey + -+ e, € V. Then for all i we set H;(A;K) = Hi 1 (K{A},e) and
Hi(A;K) = Ht(K{A},e). The vector spaces H;(A; K) and H'(A; K) are
called the ith reduced simplicial homologyand cohomology of A (with
values in K).

We observe that there are functorial isomorphisms
Hi(A; K) = Homg (H (A; K),K) and HY(A; K) = Homg (H;(A; K), K).
In particular one has dimg H;(A; K) = dimgx H'(A; K) for all i.

For later applications we record

Proposition 5.1.8. Let Ay and Ay be two simplicial complezes on [n], and
let A= A1 UAy and I’ = Ay N Ay, Then

(a) Ja = JA1 ﬂJAz and Jr = IAl + JAQ.
(b) There exists an exact sequence of the following form

- — Hy(I'; K) — Hp(Ay; K) @ Hyy(Ag; K) — Hi(4;K)
R — Hk_l(F;K) — I:Ik_l(Al;K) @Hk(AQ,K) —_— gk_l(A;K)

_— .,

This sequence is called the reduced Mayer—Vietoris exact sequence.

Proof. (a) One has er € Ja if and only if F' ¢ A, and this is the case if and
only if F' ¢ Ay and F' € A,. The last condition is equivalent to saying that
er € Ja, and ep € Ja,, which in turn is equivalent to ep € Ja, N Ja,. The
equality Jr = Ja, + Ja, is proved similarly.

(b) By using part (a) we obtain the short exact sequence

0— K{A} - K{A;} & K{As} — K{I'} — 0,
and hence the short exact sequence of complexes
0— (K{I'},e)" — (K{A1},e)" ® (K{Az},e)" — (K{A},e)" — 0.

The long exact homology sequence of this short exact sequence of complexes
is the desired Mayer—Vietoris exact sequence. O
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It is customary to denote the complex (K{A},e)* by C(A; K) where

Ci—1(AK) = (K{A};)" forall j.

This complex is called the augmented oriented chain complexof A (with
respect to K). A K-basis of K{A};;1 is given by the elements er where
F € A and |F| = j + 1. The dual basis elements (ep)* establish then a
K-basis of Cj(A; K). Usually one denotes for F = {ip < i1 < --- < i;}
the basis element (ep)* by [ig,%1,- -, 1;]. With this notation the chain map
0: éj(A;K) — ~j,l(A;K) is given by

J
N[io,i1,-.-,45]) = Z(—l)k[io,ih N TR P 1R

k=0

Ezample 5.1.9. (a) It is known from algebraic topology that H'(A; K) = 0 for
all 4, if the geometric realization of A is a contractible topological space. In
particular, if A is a simplex, say, F(A) = {[n]}, then all reduced (co)homology
of A vanishes. We can see this directly. Indeed, H*(A; K) = H*(E,e). After
applying a linear automorphism, we may assume that e = e;. Obviously the
complex (FE,eq) is exact. Hence the conclusion.

Let A be a 1-dimensional simplicial complex on the vertex set [n] forming
a cycle of length n, that is, the facets of A are {i,i+1},i=1,...,n—1 and
{1,n}. Then dimg H'(A; K) # 0. Indeed, H'(A; K) is the homology of the
complex

(K{A},e): 0 —— K{A}y —— K{A}; —— K{A}, —— 0,

The map e: K{A}y — K{A}; is injective. Since K{A}g = K and K{A}; =
@._, Ke; the cokernel of this injective map is a K-vector space of dimension
n — 1. Thus the K-dimension of the image of e: K{A}; — K{A}sis <n—1.
On the other hand, dimg K{A}s is equal to the number of facets of A, which
is n. Thus H2(K{A},e) # 0, as desired.

Actually one has H?(K{A},e) 2 K. To see this one just has to check that
the above sequence is exact at K{A};.

Now we can show

Proposition 5.1.10 (Alexander duality). Let A be a simplicial complex
on [n]. Then for each i one has a functorial isomorphism

H72(AV;K) >~ H,_;_1(AK).
Proof. By using Proposition 5.1.5 and Proposition 5.1.6 we see that

H72(AY;K) = H Y K{AY},e) = H7Y((Ja)Y,e) 2 Hyiy1(Ja,e).
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Since H*(E,e) = 0 for all 4, the long exact cohomology sequence attached to
the short exact sequence

0—Ja—E— K{A} —0

yields the isomorphisms H'(K{A},e) & H"1(Ja,e). Taking the K-dual we
obtain the isomorphisms H;(K{A},e) = H;11(Ja,e). It follows that

Hni1(Ja,€) = Hyi(K{A} ) = Hyoio1(4: K),
as desired. O

We conclude this subsection by showing that simplicial (co)homology can
be computed with any generic linear form. In what follows we will assume
that K is an infinite field.

Definition 5.1.11. Let M € G. An element v € V is called generic on M if
dimg HY(M,v) < dimg H(M,u) for all i and all u € V.

We observe that the set of elements v € V' which are generic on M is a
nonempty Zariski open subset of V. We set H*(M) = H*(M,v) if v is generic
on M, and call H(M) the ith generalized simplicial cohomology of M.

Lemma 5.1.12. Let A be a simplicial complex. Then
fiﬂ_l(A;K) ~ HY(K{A}) forall i.

Proof. The assertion follows once we can show that e is generic on K{A}.
The subset U C V of elements v = Y. a;e; € Ey with [['a; # 0 is a
nonempty Zariski open subset of V. We note that the complexes (K{A},e)
and (K{A},v) are isomorphic for all v € U. In fact, the isomorphism of
complexes is induced by the algebra automorphism ¢: K{A} — K{A} with
w(e;) = aze; for i =1,...,n. It follows that

HY(K{A},e) = H (K{A},v) (5.5)

for all i and all v € U. Let W C V be the nonempty Zariski open subset of V'
of generic elements on K{A}. Since U N W # @, we may choose v € U NW.
Thus (5.5) implies that H*(K{A}, e) has minimal K-dimension for all i. In
other words, e is generic on K{A}. O

5.2 Grobner bases

Grébner basis theory for the exterior algebra is very similar to that for the
polynomial ring. We will sketch the main features of the theory and, if nec-
essary, emphasize the differences. The fact that the exterior algebra has zero
divisors is responsible for some modifications on the theory.
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5.2.1 Monomial orders and initial ideals

Most of the concepts discussed in this subsection are completely analogous
to those in the polynomial ring. Let, as before, K be a field, V a finite-
dimensional vector space and FE its exterior algebra. After having fixed a
basis e1,...,e, of V, the elements er =e;, Aej, A--- Aej, with FF = {j; <
J2 < -+- < j;} are the monomials of E. We define a monomial order on E
as a total order < on the set of monomials Mon(E) of E such that (i) 1 < u
for all 1 # w € Mon(E); (ii) if u,v € Mon(E) and u < v, then u Aw < v Aw
for all w € Mon(F) such that u A w # 0 # v A w.

For each monomial v = er € Mon(F) we may consider the corresponding
squarefee monomial u* = zp € S = K[z1,...,x,] with op =z, 2, - - - z;,.

We define the lexicographic order on E induced by e; > eg > -+ > e, as
follows:

er <lex €G < TF <lex LG-

The reverse lexicographic order is defined similarly. Indeed any monomial
order on S induces, by restriction to the squarefree monomials, a monomial
order on E. The converse is true as well: given a monomial order < on FE.
Since there are only finitely many monomials in F, there exists a weight
w = (wy,...,w,) € N such that deg,,(u) < deg,(v) if and only u* < v*,
where degy, (er) = ) _,cp w;. This follows from Lemma 3.1.1. Now let <’ be
any monomial order on S and consider the monomial order </, on S defined
in Example 2.1.3. Then it is immediate that

u<wv ifand only if u* <), v* forall w,v€E.

The (reverse) lexicographic order on E induced by e; > ey > -+ > e, can
be described more directly as follows: for two subset F,G C [n] one defines
the symmetric difference as the set FAG = (F\ G) U (G \ F). Then one has

(i) er <iex €g, if either |F| < |G|, or else |F| = |G| and the smallest element
in FAG belongs to F,

(il) er <iev €q, if either |F| < |G|, or else |F| = |G| and the largest element
in FAG belongs to G.

For the rest of this chapter we will assume that all monomial orders con-
sidered are induced by e; > ey > --- > e,, unless otherwise stated.

Given a monomial order on F, and 0 # f € E. The initial monomial of
f with respect to <, denoted in.(f), is the biggest monomial (with respect
to the given order) among the monomials belonging to supp(f).

Let 0 # g € E be another element and v € Mon(E). Then inc(u A f) =
uAin<(f), as long as uAin< (f) # 0, and one has in-(fAg) = in<(f) Ain<(g),
as long as in<(f) Ain<(g) # 0.

Let J C FE be a graded ideal. We define the initial ideal in.(J) of J as
the monomial ideal in F generated by all monomials in<(f) with 0 # f € J.

Since J is graded one has
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inc(J) = ({in<(f): 0# f € J, f homogeneous}).

In a similar way to Proposition 2.3.7 we have that in.(J) coincides with
the K-vector space spanned by the monomials in.(f) with 0 # f € J,
and f homogeneous. Let fi,..., fr € J be homogeneous elements such that
inc(f1),...,inc(f.) is a K-basis of in.(J). Then it follows that fi,..., f, is
a homogeneous K-basis of J. In particular one has

dimg J; = dimg in.(J); for all . (5.6)

Definition 5.2.1. Let J be a nonzero ideal of E. A finite set g1,...,gs of
elements of J is said to be a Grobner basis of J with respect to <, if the
initial ideal in. (J) of J is generated by in<(g1),in<(ga),...,in<(gs).

Example 5.2.2. Let E be the exterior algebra of the K-vector space V with
basis e, es, €3, €4, and consider the ideal J C E generated by the element
e1 N\ es + ez A eyg. One has J; = E; for i = 3,4. Therefore if < denotes the
lexicographic order, then in.(J) = (e; A ea,e1 Aeg Aey,es Aes A ey). Hence
e1 Neg +e3 Aeg,e1 Aeg Aeg,es Aesg A ey is a Grobner basis of J.

Thus, in contrast to the polynomial case, the initial ideal of a principal
ideal in the exterior algebra need not be principal.

It is easy to see that a Grobner basis of J is also a system of generators
of J, compare Theorem 2.1.8 and its proof.

It is also clear that if we choose homogeneous elements fi, ..., f. in J such
that inc(f1),...,in<(f,) is a K-basis of in.(J), then fi,..., f. is Grobner
basis of J. Such a Grobner basis is usually much too big. Therefore, as in the
case of the polynomial ring, one defines: a Grobner basis G = {g1,92,...,9s}
of J is reduced, if for all i the coefficient of in<(g;) in g; is 1, and if for all ¢
and j with ¢ # j, in<(g;) divides none of the monomials of supp(g;).

In a similar way to ideals in the polynomial ring we have

Theorem 5.2.3. For any graded ideal J C E and any monomial order < on
E, a reduced Grébner basis exists and is uniquely determined.

Proof. Let {uy,...,us} be the unique minimal set of monomial generators of
in<(J), and choose homogeneous elements f; € J with in<(f;) = u;. Suppose
that there exists v € supp(f1), which is divisible by u; for some i # 1, say v =
wAu;. We may assume that v is the largest such element in supp(f1). Note that
v # ug, since uq,...,us is a minimal system of generators of in.(J). There
exists a € K such that v does not belong to the support of f] = f1 —aw A f;.
And of course we have in<(f) = in<(f1).

We replace fi by fi. If there is still an element v’ € supp(f{) which is
divisible by u; for some 7 # 1, then v' < v, and we may repeat the first step.
Since there are only finitely many monomials in F, this procedure ends after
a finite number of steps, and we obtain a homogeneous element ¢g; € J with
in<(g1) = w1 and such that no u; with ¢ # 1 divides any v € supp(g1), v # u;.
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Now we modify f5 in the same way. Thus induction on |G(.J)| guarantees the
existence of a Grébuer basis {g1,...,gs} with the property that for all ¢ and
J with ¢ # j, in<(g;) divides none of the monomials of supp(g;). Dividing g;
by the coeflicient of in<(g;) for all ¢, we obtain a reduced Grébner basis of J.

In order to prove uniqueness, we first notice that if G = {g1,...,9s} is a
reduced Grobner basis of J, then the leading coefficients of the g; are all 1
and the monomials u; = in.(g;) form the unique minimal system of monomial
generators of inc(J). Thus if ¢’ = {g},...,9;} is another reduced Grébner
basis of J, then we may assume that u; = inc(g;) for all ¢. In particular,
s = t. Suppose, g; # g.. Since the leading coefficients of ¢; and g} are both 1,
it follows that the leading monomials cancel when we take the difference, so
that either g; — g} = 0, or in<(g; — g) # u;. Suppose the second case happens.

Since uy, ..., us generate in.(J), it follows that there exists j # ¢ such that
u; divides in<(g; — g;). This contradicts our hypothesis that G is a reduced
Grobner basis, because in<(g; — g;) € supp(g;) U supp(g}). O

5.2.2 Buchberger’s criterion

As in the case of the polynomial ring, there is a division algorithm for ele-
ments in the exterior algebra. But before we formulate the exterior version of
the division algorithm, let us pause for a moment and consider again Exam-
ple 5.2.2, where J = (g) with g = e; A ea + e3 A e4. Since each element in .J
is a multiple of g, each element in J has remainder 0 with respect to g in the
sense of Chapter 2. Then by analogy with Theorem 2.3.2 one would expect
that g is a Grobner basis of J, which, as we have seen, is not the case. The
crucial point is that in<(h A g) = in<(h) Ainc(g) only if in< (h) Ainc(g) # 0.
Hence we are forced to make the adequate modification in the formulation of
the division algorithm.

In the previous section we have seen that any monomial order < on F
comes from a monomial order < on S by restriction. With the notation intro-
duced in Section 5.2.1 we have

inc(f Ag)" <inc(f)"inc(g)" (5.7)

for all f,g € E with f A g # 0. Equality holds in (5.7) if and only if in. (f) A
inc(g) # 0.

Theorem 5.2.4 (The division algorithm). Fiz a monomial order < on E,

and let g1, ...,9s, [ homogeneous nonzero elements of E. Then there exists a
standard expression of f, i.e. homogeneous elements hy,...,hs,7 € E such
that

f:Zhl/\gz+r7
=1

with the property that no v € supp(r) belongs to (in<(g1),...,in<(gs)), and
whenever h; A g; # 0, then inc(h;)* inc(g;)* < inc(f)*.
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Proof. Let J = (in<(g1),...,in<(gs)) and denote by Mon(.J) the set of mono-
mials belonging to J. We write f = 3>, c\ion(m) @ut With a,, € K as

f=h+r with h= Z agu and ry = Z Ay U
uEMon(J) ugMon(J)

We may assume that h # 0, because otherwise f = r; is already the desired
standard expression of f. Since h € J, there exists ¢ and a monomial w such
that in.(h) = w A inc(g;), and there exists a € K, a # 0 such that h and
aw A g; have the same leading coefficient. We set f =h —aw A g;. Then

inc(f) <inc(h) <inc(f).

By using induction on in<(f) we may assume that there exists a standard
expression f = >>°_  hj Ag; +r2 of f. Then f = 370  hj A gj +r with
hi:ﬁi—i—aw, h; :izj for j £ i and r =ry + ro.

We claim that this is a standard expression of f. By construction, no
v € supp(r) belongs to (in<(g1),...,in<(gs)) and for j # ¢ with h; A g; # 0,

we have inc (f)* > in<(f)* > in<(h;)*in<(g;)*. It remains to be shown that

this last statement also holds for j = i. We have w*in<(g;)* = inc(h)* <
inc(f)*, and in(h;)*inc(g;)* <inc(f)* <in<(f)*. Hence, since in(h;)* <
max{w*,inc (h;)*}, it follows that in<(h;)*in<(g;)* < in<(f)*. O

Let J C E be a monomial ideal with G(J) = {ep,,...,er,}. Let a; =
deger, for i =1,...,s, and consider the epimorphism of graded E-modules

€ @E(—ai) —J with b; — ep,
i=1

where by,...,bs is the canonical homogeneous basis of @;_; E(—a;). The

graded submodule U = Ker e of @;_, E(—a;) is called the relation module
of J.

Lemma 5.2.5. The relation module U of J with G(J) = {ep,,...,er,} is
generated by two types of relations:

(i) the S-relations (—1)"(FJ'\F“F7?)eFJ.\Fibi — (—1)"(F"'\E7'7Fi)eFi\Fjbj fori<j,
and
ii) the T-relations e;b; for all i and j with i € F;.
j J

Proof. Let c € U, since b; — efp,, we can write ¢ = ZFC[n] cr with each cg of
the form cp = ), a;eq,b; with G; U F; = F for all 4, where the sum is taken
over those ¢ with F; C F' and where a; € K.

Since e(cp) = aep for some a € K, it follow that e(c) = 0 if and only if
€(ecrp) = 0 for all F C [n]. Thus we may as well assume that ¢ is of the form
c=Y,a;eqb; with G;UF; = F.If for some i we have G;NF; # 0, then eg,b;
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is a multiple of a T-relation. Hence modulo T-relations we may assume that
G;NF; =0, so that G; = F \ F; for all i with a; # 0. After a renumbering
of the basis elements b; we may assume that a; # 0 for ¢ = 1,...,r and that
a; =0 for i > r. Then ¢ = Y|, aep\ p,bi, and since hence e(c) = 0, we see
that

(s

0= ZaieF\FieFi = Z(—l)U(F\Fi’Fi)aieF-

i=1 i=1
Thus if we set ¢; = (—1)°U"\Fo-Fig, then S°7_, ¢; = 0, so that

I

c=y e((=1)7N o e 1 b;)

i=1

_ ZCi((_l)U(F\Fi’Fi)eF\Fibi _ (—1)U(F\F17F1)9F\F1b1)-
=2

Now for any of the summands of ¢ we have

(17N e by — (—1)7 NV ey gy by

1)0’(F\(F1UFL),Fl\Fi)+U(F\FL'7FL')

= e\ (rur)((— er\F,b;

7(71)U(F\(F1UFi)’Fi\Fl)JrU(F\Fl’Fl)eFi\Flbl)
= (_1)G(F\(F1UFi)’FlUFi)eF\(FluFi) ((_I)U(Fl\Fi,Fi)eFl\Fibi (5.8)

_(_1)U(Fi\Fl’Fl)eFi\Flbl)~
Equation (5.8) follows from
(71)0(F\(F1UF1-),F1UF1-)+U(F\Fi,Fi) _ (71)0’(F1\Fi,Fi)+U(F\(F1UFi),F1UFi) (5.9)
and the corresponding identity with the role of F} and F; exchanged. The
identity (5.9) itself is a consequence of the fact that
(ep\(rur) Nep\F,) ANer, = ep\(rur,) N (€p\F, A er,).

The calculations show that c is a linear combination of S-relations, as desired.
O

Given a sequence g1, go,...,gs of nonzero homogeneous elements in E
with in<(g;) = eg, and leading coefficient ¢;. According to the two types of
relations described in Lemma 5.2.5 we define the S- and T-polynomials of
gi,--.,9s as follows:

(i) for each i < j let
1 NG .G 1 NG, G,
S(gi,95) = ;(—1)0(G’\G“Gl)ecj\ci Ngi — ;(—1)U(G"\G“GJ)GG@\G_7 A gj,
i j

and
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(ii) for each ¢ and j with i € G; set T'(e;, g;) = c%ei A gj.

Let f € E be some nonzero homogeneous element. We say that f reduces
to 0 with respect to g1, 9o, ..., gs, if there exists a standard expression of the
form f=3"7_, hi A gi.

With this terminology introduced one has

Theorem 5.2.6 (Buchberger’s criterion). Let J be a nonzero graded ideal
of E and G = {g1,...,9s} a system of homogeneous generators of J. Then
the following conditions are equivalent:

(a) G is a Grobner basis of J.
(b) All S- and T-polynomials of G reduce to 0 with respect to g1, ..., gs.

Proof. (a) = (b): We may assume that the coefficients of ini(g;) in g; are
all 1. The S- and T-polynomials belong to J. Let f € J be any nonzero
homogeneous element, and let f = >"7 | h; A g; + r be standard expression of
f with respect to g1, 92, ...,9s. Suppose that r # 0. Then r € J, and hence
inc(r) € inc(J). Since G is a Grobner basis of .J, there exists an integer ¢
such that in(r) is a multiple of in<(g;). This a contradicts the property of a
remainder.

(b) = (a): Let f € J be a nonzero homogeneous element. Then f =
> hi A gi and inc(f)" < maxi{inc(h; A g;)"} < maxi{in<(hi)" in<(g:)"},
where the maximum is taken over those i for which h; A g; # 0. If equality
holds, then in.(f)* = in<(h;)*in<(g;)* for some i. This then implies that
inc(f) =in<(h;) Ainc(g;), and we are done.

Let § = max;{in<(h;)*in<(g;)*}, and suppose now that in(f)* < §. We
will show that f can be rewritten as f =), hi A g; with ine (h)* ine(g;)* < 6
for all ¢ with h; A g; # 0. Proceeding by induction on é completes then the
proof.

We write f as

/= Z hi N gi + Z hi N gq

inc (hi)* in<(g:;)*=0 inc(hi)*inc(g;)* <4
= > aiine(hy) A gi + > (hi — a;inc(hq)) A gi
inc (hi)* in<(g:)*=0 inc (hi)* in<(g;)*=0

+ > hi A gi,

inc (hi)* inc (gi)* <8
where a; is the leading coefficient of h;. Since
inc(hi —a;inc(h;))" inc(g:)" <6,
it remains to consider the sum

s = Z a;ine(h;) A gi-

inc (hi)* in<(g;)*=0
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Asinc(f)* < 4, we also have in<(s)* < 0. Hence it follows that

a;inc(h;) Ainc(g;) = 0.
inc(hi)*in<(gi)*=48

In other words,

U = Z a; in< (hl)bl c Lf7

inc(h;)*in<(gi)*=48

where U is the relation module of (in<(g1),...,in<(gs)). By Lemma 5.2.5 the
S- and T- relations generate U. Thus we can write u = »_,_, c¢;u; where each
u; is either an S- or a T-relation. Since u is homogeneous of Z"-degree deg,
we may assume that for each j we have the following equation of Z"-degrees

deg(cju;) = deg(c;) + deg(u;) = degd. (5.10)
Let .
n: @E(—al) — J with bi = G-
i=1

Then n(uy) is either as S- or T-polynomial. Therefore our assumption implies
that n(ug) = >.0_; ag; A g; with

ine ((ug))* > ine(ar)” ine(g:)" (5.11)

whenever ay; A g; # 0, and hence

s=mn(u Z ek An(ug)
_chk/\am ANgi = Zh A i,
i=1 k=1
where h; = 22:1 ¢, N ag;. Since
inc(h)* < ml?x{in< (e AN awi)*} =inc(cj Aaji)* <inc(e;) inc(aj;)”
for some j with ¢; # 0, one obtains together with (5.11) that
in(hi)* in(g:)* < inc(e;)* (in(ags)* ine(g,)")
< inc(¢;)" ine(n(u;))* <4,

as desired. The last inequality follows from (5.10), since degu; >
degin (m(u;))" 0
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Remark 5.2.7. As we know from Lemma 5.2.5, the relation module U of
(inc(g1),...,in<(gs)) is generated by the S- and T-relations. This may of
course not be a minimal set of generators for U. However, in the proof of the
Buchberger criterion we have seen that, in order to show that G is a Grébner
basis of J, it is enough to check that the S- and T-polynomials corresponding
to a minimal set of generators of U reduce to 0 with respect to g1,...,gs-

Theorem 5.2.6 provides Buchberger’s algorithm for computing a Gréb-
ner basis:

(1) Start with a set of G = {g1,...,9s} of homogeneous generators of J.
If all S- and T-polynomials reduce to 0 with respect of g1, ..., gs, then G is a
Grobner basis of J, and the algorithm stops.

(2) If this is not the case, then one of the S- or T-polynomials has a
remainder 7 # 0. Then replace G by G’ = GU{r} and proceed with (1) where
G is replaced by G'.

The algorithm terminates simply because there are only finitely many
monomials in F.

5.2.3 Generic initial ideals and generic annihilator numbers in the
exterior algebra

Throughout this section we will assume that K is an infinite field. We let
as before V be an n-dimensional K-vector space with basis eq,...,e,. We
identify the elements in GL(n; K) with the automorphisms of V. Let @ =
(aij) € GL(n; K); then the corresponding automorphism is given by

n

O[(Z :viei) = Z(Z ajixi)ej.

j=1 i=1

This automorphism induces a K-algebra automorphism F — FE which we
denote again by a.

Let < be a monomial order on E with e; > ey > --- > ¢, and J a graded
ideal in E. Then one defines the generic initial ideal gin_(J) as for ideals
in the polynomial ring. The proof of its existence and the property of being
Borel-fixed is verbatim the same as in the case of the polynomial ring.

The next two theorems summarize these facts.

Theorem 5.2.8. Let J C E be a graded ideal and < a monomial order on E.
Then there exists a nonempty open subset U C GL(n; K) such that inc(aJ) =
inc(a/J) for all a,a/ € U.

The ideal inc(aJ) for a € U is called the generic initial ideal of J with
respect to <, and is denoted gin_(J).

Theorem 5.2.9. gin_(J) is a Borel-fized ideal, that is, gin_(J) is stable un-
der the action of the Borel subgroup B of GL(n; K), and gin_(J) = J if J is
Borel-fized.
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A monomial ideal J C FE is called strongly stable if for each monomial
er € J and each j € F and ¢ < j one has that e; Aep\(;; € J.

In Proposition 4.2.6 we have seen that the generic initial ideal of a graded
ideal in the polynomial ring is strongly stable (in the sense of monomial ideals
in a polynomial ring), provided char(K) = 0.

The corresponding result holds here. But we need no assumption on the
characteristic of K.

Proposition 5.2.10. The generic initial of a graded ideal J C E is strongly
stable.

Proof. Suppose gin_(J) is not strongly stable. Then there exists a monomial
er € gin_(J) and numbers i < j with j € F' such that e; Aep\ ;1 & gin_(J).
Let o € B with a(e;) = e; + e; and afey) = e, for k& # j. Then
a(er) = er * e; A ep\y;}, and hence does not belong to gin_(J), contra-
dicting Theorem 5.2.9. a

Let v =vq,...,v, be a K-basis of £y and M a graded F-module. Then
for each i, the module H(M/(vy,...,v;—1)M,v;) is a graded E-module with
jth graded components H7(M/(v1,...,v;—1)M,v;). We set

e [ dimg HI(M/(v1,...,vi—1)M,v;), if i <n,
a“(v’M)_{ﬂOj(M), ifi=n,

and call these numbers the annihilator numbers of M with respect to v.

Theorem 5.2.11. Let J C E be a graded ideal. With each v = (gi;) €
GL,(K) we associate the sequence v = ~(e) with v; = Y .| gije; for
j=1,...,n. Then there exists a nonempty Zariski open subset U C GL,(K)
such that ai;(y(e); E/J) = (£, E/ gin _ (J)) for alli and j and ally € U,

where f = e,,en_1,...,€1.

In Subsection 5.1.4 we introduced generalized simplicial homology. As a
consequence of Theorem 5.2.11 we have

Corollary 5.2.12. Let J C E be a graded ideal. Then
H(E/J)=H(E/gin__(J),en) = H(E/gin__ (J)).

Problems

5.1. Let V be a K-vector space with basis ey, ..., e,. By using the fact that
er Nea A+ ANey # 0, show that the elements ep, F' C [n] are linearly
independent.

5.2. Let E be the exterior algebra of a finite-dimensional K-vector space, and
M a graded E-module (cf. Definition 5.1.1). Show that (fz)g = f(xg) for all
f,g € E and all © € M. (This then proves that M is an E-E bimodule.)
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5.3. Let K be a field of characteristic # 2, V' the K-vector space with basis
e1, €2, €3, €4, F its exterior algebra and f = e; +e3 Aesg € E. Consider the left
ideal I = ({g A f: g € E}) and the right ideal J = ({f Ag: g € E}). Show
that I # J.

5.4. Show that the map E — EY which assigns to each homogeneous element
f € E the element g — g A f in EV is an isomorphism of graded E-modules.

5.5. By referring to the definition of the oriented chain complex C (4; K) for
a simplicial complex A as given in Subsection 5.1.4, show that the chain map

d: C;(A;K) — Cj_1(A; K) is defined by
J
O[ioyix, -+, i5]) =Y (=1 Moy in, - -ik1, ik, 5],

where F' = {ig <i1 <--- <1} € A

5.6. Let J C E be a graded ideal and < a monomial order on F. Show that
in.(J) coincides with the K-vector space spanned by the monomials in. (f)
with 0 # f € J, and f homogeneous.

5.7.Let e =) ", e; and J = (e) C E. Then for any monomial order, e is a
Grobner basis for J.

5.8. Let E be the exterior algebra of the K-vector space with basis e, e, €3,
and fix a monomial order < with e; > ey > e3. Compute gin_(J) for J =
(62 A 63).

Notes

The exterior face ring was introduced by Gil Kalai [Kal84] in order to define
exterior algebraic shifting, which will be treated in Chapter 11.

Shifting theory is defined by using generic initial ideals. For this purpose
one has to develop Grobner basis theory over the exterior algebra. In our
presentation of this theory we followed the exposition in [AHH97].
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Hilbert functions and resolutions






6

Hilbert functions and the theorems of
Macaulay and Kruskal-Katona

The Hilbert function of a graded K-algebra R counts the vector space dimen-
sion of its graded components. It encodes important information on R such as
its Krull dimension or its multiplicity. Hilbert’s fundamental theorem tells us
that the Hilbert function is a polynomial function for all large integers. The
possible Hilbert functions are described by Macaulay’s theorem.

The Hilbert function of the Stanley—Reisner ring of a simplicial complex
A is determined by the f-vector of A, and vice versa. The possible f-vectors
of a simplicial complex are characterized in the theorem of Kruskal-Katona.
This theorem is the “squarefree” analogue of Macaulay’s theorem.

6.1 Hilbert functions, Hilbert series and Hilbert
polynomials

6.1.1 The Hilbert function of a graded R-module

Let K be a field and let R = €,., R; be graded K-algebra. R is called
standard graded if R is a finitely generated K-algebra and all its generators
are of degree 1. In other words, R = K[R;] and dimg Ry < co. The archetype
of a standard graded K-algebra is the polynomial ring S = Klz1,...,z,]
with degz; = 1 for ¢ = 1,...,n. Any other standard graded K-algebra is
isomorphic to the polynomial ring modulo a graded ideal; that is, an ideal
which is generated by homogeneous polynomials.

Let M be a finitely generated graded R-module. All the graded components
M; of M are finite-dimensional K-vector spaces. An element x € M is called
homogeneous of degree i if x € M;. Any element in M can be uniquely
written as a (finite) sum of homogeneous elements.

Definition 6.1.1. The numerical function

H(M,-): Z — 7, i+ H(M,i):=dimg M;

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 97
DOI 10.1007/978-0-85729-106-6_6, (©) Springer-Verlag London Limited 2011
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is called the Hilbert function of M. The formal Laurent series Hy(t) =
> iz H(M,i)t" is called the Hilbert series of M.

Ezample 6.1.2. Let S = K[x1,...,x,] be the polynomial ring in n variables.
The monomials of degree 7 in S form a K-basis of S;. It follows that

H(S,i) = (”ﬂ_l) - (””_1) and Hg(t) = ﬁ

) n—1

Note that H(S, —) is a polynomial function of degree n — 1 and that Hg(t) is
a rational function with exactly one pole at ¢ = 1.

For an arbitrary graded R-module the Hilbert function and the Hilbert
series are of the same nature as in the special case described in the example.

Theorem 6.1.3 (Hilbert). Let K be a field, R a standard graded K -algebra
and M a nonzero finitely generated graded R-module of dimension d. Then

(a) there exists a Laurent-polynomial Qnr(t) € Z[t,t71] with Qp (1) > 0 such

that On(t)
Har(t) = M)
M( ) (1 — t)dv
(b) there exists a polynomial Py(x) € Q[z] of degree d—1 (called the Hilbert
polynomial of M) such that

H(M,Z) = PM(’L) for all 7> degQM —d.

Proof. (a) After a base field extension we may assume that K is infinite. We
proceed by induction on dim M. If dim M = 0, then M; = 0 for ¢ > 0, and
the assertion is trivial.

Suppose now that d = dimM > 0. We choose y € R; such that y €
M\ Upeass(v)\ {m) I» Where m = @, Ri- Then y is almost regular on M
(cf. the proof of Lemma 4.3.1), and dim M /yM = d—1 since y does not belong
to any minimal prime ideal of M.

The exact sequence

0 N M(*l) g M M/yM — 0
with N = (0 :as y)(—1) yields the identity
Hagpyar(t) = Hu (t) + tHa (t) — Hy (t) = 0.

In other words we have

_ Hayppyne(t) — HN(t)'

Hu (1) 1—t

By our induction hypothesis there exists a Laurent polynomial @ 7/ () with
Qnrijyr(1) > 0 such that
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Hyppyn (t) = %'

Thus we see that

_ Quiyyne(t)/(1 = 1)1 — Hy (1) _ Qu()

Hu () 1—t (1—t)d

with
Qu(t) = Qurpyar(t) — Hy(t)(1 — )4t (6.1)

Since Hy(t) is a Laurent polynomial it follows from (6.1) that Qs (t) is a
Laurent polynomial. Equation (6.1) also implies that Qs (1) = Qaz/yar(1) > 0
if d > 1. Thus it remains to be shown that Qs(1) > 0if d = 1, or equivalently
that ¢(0 :pr y) < 6(M/yM) if dim M = 1.

Observe that M is a finitely generated A = K[y]-module, since M/yM
has finite length. Since A is a principal ideal domain, and since M is a graded
A-module of dimension 1, it follows that M = A" @ @;_, A/(y**) with > 0.
Thus we see that ¢(M/yM) =r+s>s=0(0: y).

(b) Let Qar(t) = >°;_, hit'. Then

HMm:4§:mﬂya—wd:§:mﬂ§:(dzflﬁﬁ.
i=r i=r 3>0

By using the convention that (‘Z) = 0 for a < i, we deduce from the preceding
equation that

N e (|
H(M,q) = h,; . .2
o =3 (7 (6:2)
In particular, if we set Py(2) = >25_, h; (I+Z:{_l), then Pys(z) is a polyno-
mial of degree d — 1 with H(M, i) = Py (i) for i > s — d. O

Theorem 6.1.3 implies that the Krull dimension d of M is the pole order of
the rational function Hy(t) at ¢t = 1. The multiplicity e(M) of M is defined
to be the positive number Qs (1). It follows from (6.2) that e(M)/(d — 1)! is
the leading coefficient of the Hilbert polynomial Py (x) of M.

The a-invariant is the degree of the Hilbert series Hy(t), that is, the
number deg Qs (t) — d.

Let Qu(t) =i, h;t'. The coefficient vector (hy, hyi1,...,hs) of Qar(t)
is called the h-vector of M.

6.1.2 Hilbert functions and initial ideals

Let K be a field, S = K|[x1,...,x,] the polynomial ring in n variables and
I C S an ideal. For a given monomial order < there is a natural monomial
K-basis of the residue class ring S/I. We denote by Mon(in<(I)) the set of
monomials in inc (7).
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Theorem 6.1.4 (Macaulay). The set of monomials Mon(S) \ Mon(in< (1))
form a K-basis of S/I.

Proof. Let G = {¢1,...,9-} be a Grobner basis of I, and let f € S. Then
by Lemma 2.2.3, f has a unique remainder f’ with respect to G. The residue
class of f modulo I is the same as that of f/, and no monomial in the support
of f’ is divided by any of the monomials in<(g;). This shows that Mon(.5) \
Mon(in< (1)) is a system of generators of the K-vector space S/I.

Assume there exists a set {u1,...,us} C Mon(S) \ Mon(in<(I)) and a; €
K\ {0} such that h = >}, a;u; € I. We may assume that u; = in(h). Then
u1 = in<(h) € Mon(in<(I)), a contradiction. O

As an immediate consequence we obtain the following important result

Corollary 6.1.5. Let I C S be a graded ideal and < a monomial order on
S. Then S/I and S/in<(I) have the same Hilbert function, i.e. H(S/I,i) =
H(S/inc(I),1) for alli.

We also obtain a Grébner basis criterion.

Corollary 6.1.6. LetG = {q1,...,g-} be a homogeneous system of generators
of I, and let J = (in<(g1),...,in<(g.)). Then G is a Grébner basis of I if
and only if S/I and S/J have the same Hilbert function.

Proof. We have J C inc (1), so that H(S/J,i) > H(S/in(I),i) = H(S/I,1)
for all i. Equality holds if and only if J = in. (). O
6.1.3 Hilbert functions and resolutions

Let K be a field, S = K|[zy,...,x,] the polynomial ring in n variables and M
a finitely generated graded S-module. Let

F:0—F,—-F 41— —F—F—M-—70

be a graded minimal free S-resolution of M with

B
Fy = @S(—j)ﬂ” = @5(—dij)~

By using the fact that the Hilbert function is additive on short exact sequences
and by using that Hg_;)(t) = ¢’ /(1—t)", we deduce from the free S-resolution
F of M the formula

Hy(t) = (6.3)

where Rar(t) = Y20 (=1)" 3, Bigt! = Yo0_(=1) Zle tdis. A comparison
with Theorem 6.1.3 shows that
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Qut)(1—t)""% = Ry(t)

From this equation we deduce that
n—d n— n—
Ry(1) = (~1)" D (n - )!Qui (1) = (~1)" = (n — d)le(M),

and that Rs\? (1)=0fori=0,...,n—d—1. (Here Rg\i/[) denotes the ith formal
derivative of Ryys).
Thus

S-S s - = { or0 <k <n—d
A1 dij — (=1)"4(n —d)le(M), for k=n—d.
=0 j=1lr=

This immediately implies the following useful formulas

Corollary 6.1.7. With the notation introduced one has

Z Zd for0<k<n-—d,
~ )" =4(n —d)le(M), for k=n—d.

6.2 The h-vector of a simplicial complex

The h-vector of a module, as defined in Section 6.1 together with the Krull-
dimension of the module encodes all the information provided by the Hilbert
function. Let A be a (d — 1)-dimensional simplicial complex on the vertex
set [n]. In this section we want to relate the h-vector of the Stanley—Reisner
ring K[A] to the f-vector f(A) = (fo, f1,.-., fa—1) of A. Here f; denotes the
number of faces of A of dimension i. Letting f_; = 1, we defined in Chapter 1
the h-vector h(A) = (hg, h1,...,hq) of A by the formula

Zf“t—l thdz

Equivalently,

Zfz (1 — 1) thl (6.4)

The following result justifies this definition with hindsight.

Proposition 6.2.1. Let A be a simplicial complex of dimension d — 1 with
f-vector (fo, f1,..-, fa—1). Then

S fiati(1— )4

HK[A](t) = (1—15)‘1




102 6 Hilbert functions and the theorems of Macaulay and Kruskal-Katona

Proof. Write K[A] = S/Ia where S = k[z1,...,2,]. By Corollary 1.1.4 the
monomials not belonging to Ix form a K-basis of K[A]. For a monomial u =
x® we set supp(u) = {i¢ € [n]:a; # 0}. By Proposition 1.5.1, the monomials
u € Mon(S) with supp(u) € A form a K-basis of K[A].

Fix a face F' € A. Then

{u € Mon(S): supp(u) = F} = {axpv: v € Mon(K[{z;}icr])}-

Since the disjoint union of the sets {u € Mon(S): supp(u) = F'} with FF € A
establishes a K-basis of K[A], we see that

tF]

Hya(t) = ) 7
[4] F;A (1 _ 2f)|F|

and the desired formula for H ) (t) follows. O
Combining Proposition 6.2.1 with Theorem 6.1.3 we obtain

Corollary 6.2.2. Let A be a simplicial complex of dimension d—1 and K a
field. Then dim K[A] = d.

The number y(A) = Zztol(—l)ifi is called the Euler characteristic of

A. In terms of simplicial homology one has
d 4 d—1 4 -
—1+x(4) =) (1) dimg K{A}; = Y (—1)' dimg H(A; K),

=0 i=—1

see Definition 5.1.7.
The Euler characteristic of A can also be expressed by the h-vector and
the multiplicity of K[A] by the f-vector, as follows at once from (6.4).

Corollary 6.2.3. With the notation introduced one has

x(A) = (1) hg+1 and e(K[A]) = fa_1.

6.3 Lexsegment ideals and Macaulay’s theorem

The purpose of the present section is to give the complete characterization of
the possible Hilbert functions of a standard graded K-algebra R, where K as
usual is a field.

We may write R = S/I where S = Klx1,...,2,] is the polynomial ring
with standard grading, and where I C S is a graded ideal. By Theorem 6.1.5
we know that S/I and S/ in<(I) have the same Hilbert function for any mono-
mial order on S. Therefore we may as well assume that I C S is a monomial
ideal. Since by Corollary 6.1.4 the monomials in S not belonging to I form
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a K-basis of S/I, and since this K-basis determines the Hilbert functions of
S/1, it is then apparent that the Hilbert function of S/I does not depend on
the base field K. Thus we assume that char K = 0. Now we pass from S/I
to S/gin_(I), again without changing the Hilbert function. By Proposition
4.2.6 we have that gin_(]) is a strongly stable ideal.

Hence the problem of characterizing the Hilbert function of S/ is reduced
to the case that [ is a strongly stable ideal. A further reduction is needed to
characterize the possible Hilbert functions.

Among the strongly stable monomial ideals (introduced in Subsection
4.2.2), there is a very distinguished class of monomial ideals, called lexseg-
ment ideals.

We denote by Mong(S) the set of all monomials of S of degree d. A set
L C Mong(S) of monomials is called a lexsegment if there exists v € £ such
that v € £ for all v € Mong(S) with v >ex u.

One says that £ C My(9S) is strongly stable, if one has x;(u/x;) € L for
all w € £ and all ¢ < j such that x; divides u.

For a monomial u € S we set m(u) = max{i: z; divides u}, and call a set
L C Mony(S) stable, if z;(u/z,,)) € £ for all w € £, and all i < m(u).

As already defined before, a monomial ideal I is called a lexsegment
ideal, or a (strongly) stable monomial ideal, if for each d the monomials
of degree d in I form a lexsegment, or a (strongly) stable set of monomials,
respectively.

Obviously one has the following implications:

lexsegment = strongly stable = stable,

and all implications are strict.

A lexsegment in a polynomial ring may no longer be a lexsegment in a
polynomial ring extension. For example, the set {23, x122, 23} is a lexsegment
in K[z1,x2] but not in K[z1,22,z3]. A set which remains a lexsegment in all
polynomial ring extensions is called a universal lexsegment.

The fundamental result of this section is the following

Theorem 6.3.1. Let I C S be a graded ideal. Then there exists a unique
lexsegment ideal, denoted I'**, such that S/I and S/I'** have the same Hilbert
function.

The idea of the proof is simple: say, I C S is a graded ideal. For each
graded component I; of I, and let Ijl.e" be the K-vector space spanned by the
(unique) lexsegment £; with |£;| = dimg I;. Then define I'** = D, I}ex.

Obviously the I'* so constructed is the only possible candidate meeting
the requirements of the theorem. The only problem is, whether it is an ideal.
If this is the case, then this is the unique lexsegment ideal with the same
Hilbert function as I. It is clear that I'** is indeed an ideal if and only if
{LL‘l, . 7.Tn}£j - £j+1.

Let N/ C Mon(S) be any set of monomials. Then we call the set



104 6 Hilbert functions and the theorems of Macaulay and Kruskal-Katona
Shad(N) = {z1,..., 2, N ={zju: ue N,i=1,...,n}

the shadow of N. Therefore I'®* is an ideal if and only if Shad(L;) C L£;41
for all j.

Note that if A/ C Mong(S) is stable, strongly stable or a lexsegment, then
so is Shad ().

For stable ideals, the length of the shadow can be computed. Let N C
Mong(S) be a set of monomials. We denote by m;(AN) the number of elements
u € N with m(u) = i, and set m<;(N) = 375_, m;(N). Then we have

Lemma 6.3.2. Let N' C Mony(S) be a stable set of monomials. Then
Shad(N) is again a stable set and

(a) m;(Shad(N)) = m<;(N);
(b) [Shad(N)| = 3212, m<i(N).

Proof. (b) is of course a consequence of (a). For the proof of (a) we note that
the map

o:{u e N: m(u) <i} — {u € Shad(N): m(u) =i}, ur— ux;

is a bijection. In fact, ¢ is clearly injective. To see that ¢ is surjective, we let
v € Shad(N) with m(v) = i. Since v € Shad(N), there exists w € N with
v = z;w for some j < 4. It follows that m(w) < i. If j = 4, then we are
done. Otherwise, j < ¢ and m(w) = 4. Then, since N is stable it follows that
u=x;(w/z;) € N. The assertion follows, since v = uz;. O

Now Theorem 6.3.1 will be an easy consequence of

Theorem 6.3.3 (Bayer). Let L C Mong(S) be a lezsegment, and N C
Mong(S) be a strongly stable set of monomials with |L| < |N|. Then m<;(L) <
m<;(N) fori=1,...,n.

Proof. We first observe that N' = Ny UNjz, U+ - UNgzd where each N is a
strongly stable set of monomials of degree d — j in the variables x1,...,z,_1.
Such a decomposition is unique. Similarly, one has the decomposition £ =
LoULixz, U---U defl where each £; is a lexsegment.

We prove the theorem by induction on the number of variables. For n = 1,
the assertion is trivial. Now let n > 1. The inequality

m<i(£) < m<i(N) (6.5)
is trivial for ¢ = n, since |£| = m<, (L) and |N| = m<, (N).
Note that |Lo| = m<,—1(L) and that [No| = m<,—1(N). Thus in order to

prove (6.5) for i = n — 1 we have to show that

|Lo| < Nl (6.6)
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Assume for a moment that (6.6) holds. Then by applying our induction hy-
pothesis we obtain
mgl(ﬁ) = mgi(ﬁo) S mgi</\/'0) = mgi(/\/’) fOI' 7= 1, e, — 17

as desired. Thus it remains to prove the inequality (6.6).

For each j, let N be the lexsegment in Mong_;(K[z1,..., %, 1]) with
V7| = [N;| and set N* = NG UNTz, U--- UNjzd

We claim that N* is again a strongly stable set of monomials. Indeed, we
need to show that {z,..., 2,1 }N; C N} for j = 1,...,d. Since the sets
{z1,. ., 21 }N; and N}, are lexsegments, it suffices to show that

{1, wnea IV < NG -

By using that A is a stable set of monomials we have that {z1,..., a:n,l}/\/'j C
Nj_yfor j=1,...,d. Now we apply Lemma 6.3.2 and our induction hypoth-
esis and obtain

{1, oo 1}N*|—Zm<l ZmQ
= |{x1a'~-axn71}-/\[j| < |./\[j,1| = |j\/}f‘:1|.

This completes the proof of the fact that N* is a strongly stable set of mono-
mials.

Since |N*| = [N, we may replace N' by N'* and thus may as well assume
that Ny is a lexsegment.

For a set of monomials S we denote by min S the lexicographically smallest
element in S. Since both £y and Ny are lexsegments, inequality (6.6) will
follow once we have shown that min £y > min M.

Given a monomial m = [[_, 2, we set m = (z,_1/2,)**m. This assign-
ment is order preserving. In other words, if m,n € Mong(S) with m < n (with
respect to the lexicographic order), then m < n. We leave the verification of
this simple fact to the reader.

Let u = min £ and v = min . Since N is a strongly stable set of mono-
mials it follows that © € Ny. Hence min Ay < ©. On the other hand, if
w = minNp, then w > v, and so w = w > v. In other words, we have
min Ny = ©. Similarly, we have min Ly = .

Finally we observe that u > v since £ is a lexsegment and since |£| < | N,
by assumption. Hence we conclude that

min £y = @ > ¥ = min NV,
as desired. O

Now we are ready to prove Theorem 6.3.1: based on our discussions follow-
ing Theorem 6.3.1 it remains to be shown that if I C S is a graded ideal and
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L; is the lexsegment with |£;| = dimg I;, then Shad(L;) C £,41. As we have
seen before, we may assume that I is strongly stable. Let A; be the strongly
stable set of monomials which spans the K-vector space I;. Since |L;| = |Nj],
Bayer’s theorem together with Lemma 6.3.2 implies that

Shad(£;)| = > m<i(L) <> me = | Shad(Nj)].
=1 =1

On the other hand, since I is an ideal we clearly have that Shad(N;) C Njy1.
Hence

| Shad(£;)] < | Shad(Aj)] < [Nja| = [£j4].
Since, both Shad(L;) and L, are lexsegments, this implies Shad(L;) C
L1, as desired.

We shall now use Theorem 6.3.1 to derive the conditions which characterize
the Hilbert functions of standard graded K-algebras. To this end we introduce
the so-called binomial or Macaulay expansion of a number. We first show

Lemma 6.3.4. Let j be a positive integer. Then each positive integer a has a

unique erpansion
_ (% G\ o (%
= () () ++ (3)

withaj>aj_1>-~>ak2k21.

Proof. We choose a; maximal such that a > (“jl ) If equality holds, then this
is the desired expansion. Otherwise let ' = a— (”]7) Then a’ > 0 and by using

induction on a, and since @’ < a we may assume that a’ = (‘;J:f) + -+ ()
with aj_1 > --- > ap > k > 1. Therefore, a = (a;) + (‘37*11) 4+ 4 (a,:) and
it remains to be shown that a; > a;_;. Since (“J‘H) > a it follows that

(2= () - ()= ()

Hence a; > a;_1. This proves the existence of a binomial expansion.

Next we show that if a = (an)Jr(aJ 1)+ +( ) with a; > aj_1 > - >
ap > k > 1, then a; is the largest integer such that a > ( ) We prove this by
induction on a. The assertion is trivial for a = 1. So now suppose that a > 1

and that (“J;l) < a. Then

=5 ()= (7)) = ()= ()
= \i)=\ AAVES VAN B

contradicting the induction hypothesis.

(]
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Now since the first summand in the expansion of a is uniquely determined,
and since by induction on the length of the expansion we may assume that the
expansion of a’ is unique we conclude that also the expansion of a is unique.

O

Let a = (“JJ) + (‘;J_*ll) + -+ (%) be the binomial expansion of a with respect

to j. Then we define

ol — a.j-i-l n aj_l.—&-l R ap+1 .
Jj+1 J k+1

For convenience we set 00 for all positive integers j. One has
Lemma 6.3.5. Let a > b and j be positive integers. Then a9 > b}

Proof. We may assume that a > b. By the construction of the binomial ex-
pansions it follows that there exists an integer [ such that

a; :bj, aj—1 :bj_l,...,al_lbl_l,al > by.

()= (D) + () =+ (3),

the assertion follows. O

Since

Binomial expansions naturally appear in the context of lexsegments. In-
deed, let u € Mon,(S) and denote by £, the lexsegment {v € Mon,(S): v >
u}. We also denote for any integer 1 < i < n by {z;,...,2,}? the set of all
monomials in degree j in the variables xz;, ..., z,. Then we have

Lemma 6.3.6. Let u € Mon;(S), u = xp, T, - Tg; with ky <k <o < ky.
Then

J i—1
Mon;(9) \ Lo = | J{wkit1, - en ™ ] 2,
=1 r=1

This union is disjoint and in particular we have
J a
|MOHJ(S)\£u‘ =Z<Zl> with ai:n—kj_i+1+i—1.
i=1

Proof. We notice that

Mon;(S)\ Lo = {Zk1 41, . - - 7xn}j U (Mon;—1(S) \ Eux;f)xkl.

By using induction on j, the assertion follows. a

The definition of the binomial operator a — a'?) is justified by the follow-
ing result:
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Proposition 6.3.7. Let £ C Mon;(S) be a lexsegment with a = | Mon;(S) \
L|. Then ‘
| Mon;,1(S) \ Shad(£)| = a'.

Proof. Let u € Mon;(S) be such that £ = £,. Then Shad(L) = Ly, , and
the desired equation follows immediately from Lemma 6.3.6. O

As the final conclusion of all our considerations we now obtain

Theorem 6.3.8 (Macaulay). Let h:Z, — Z be a numerical function. The
following conditions are equivalent:

(a) h is the Hilbert function of a standard graded K -algebra;

(b) there exists an integer n > 0 and a lexsegment ideal I C S = K[x1,..., 2y
such that h(i) = H(S/I,%) for all i > 0;

(c) h(0) =1, and h(j + 1) < h(5)9) for all j > 0.

Proof. By Theorem 6.3.1, h is the Hilbert function of a standard graded K-
algebra if and only if it is the Hilbert function of an algebra S/I where each
homogeneous component I; is spanned by a lexsegment £;. This proves the
equivalence of (a) and (b).

(b)= (c): Let h(j) be the Hilbert function of a lexsegment ideal of S/I,
where I is a lexsegment ideal for which each homogeneous component I; is
spanned by a lexsegment £;. Since Shad(L;) C L4 it follows from Proposi-
tion 6.3.7 that

H(S/I,j+1) = | Mon;1(S)\Lj1| < | Mon;y1(S)\Shad(L;)| = H(S/I,5)",

and of course we have H(S/I,0) = 1. These are exactly the conditions given
in (c).

(¢)= (b): Let n = h(1), and set S = K|x1,...,x,]. We first show by in-
duction of j that h(j) < dim S; = (”+§_1) for all j. The assertion is trivial for
j = 1. Now assume that h(j) < ("Jr;*l) for some j > 1. Then the statement
in Lemma 6.3.5 implies that

; () :

. N, n+j—1 n-+7
h(j+1) < h()V < ) = ( >,

i ) (J) ( j i1

as desired. It follows that dimg S; — h(j) > 0 for all j. Now we let £; C
Mon;(S) be the unique lexsegment with |£;| = dimg S; — h(j) and let I; be
the K-vector space spanned by £;. We claim that I = @j>0 I; is an ideal.
By construction, H(S/I,j) = dim S;/I; = h(j) for all j. Thus it remains to
prove the claim, which amounts to show that Shad(L;) C £;41 for all j > 0,
equivalently that Mon;1(S)\ £;41 C Mon;41(S)\ Shad(L;) for all j > 0. By
Proposition 6.3.7 this is the case if and only if A(j+1) = | Mon,;11(S)\L;+1| <
| Mon,+1(S) \ Shad(£;)| = h(j)9 for all j > 0. Thus the conclusion follows.

O
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6.4 Squarefree lexsegment ideals and the
Kruskal-Katona Theorem

When is a given sequence of integers f = (fo, f1,..., fa—1) the f-vector of
a simplicial complex? The Kruskal-Katona theorem gives a complete answer
to this question. The strategy for its proof is as follows: let A be a (d — 1)-
dimensional simplicial complex on the vertex set [n], K a field and K{A} be
the exterior face ring of A, as introduced in Chapter 5. Recall that K{A} =
E/Ja, where E is the exterior algebra of the K-vector space V = @, Ke;
and Ja C FE is the graded ideal generated by all exterior monomials ep = e;, A
i, N+ Aey, for which FF = {i; <ig < --- <ip} & A Then K{A} is a graded
K-algebra and Hgay(t) = Z?:o fi—1t? where f_1 =1 and (fo, f1,-.-, fi_1)
is the f-vector of A. Thus we have to determine the possible Hilbert functions
of graded algebras of the form E/J. The steps in solving this problem are
completely analogous to those in the proof of Macaulay’s theorem.

Let J C E be a graded ideal. For the computation of the Hilbert function
one may assume that the base field is infinite. Otherwise we choose a suitable
extension of the base field. In Proposition 5.2.10 we have seen that gin(J) is a
strongly stable ideal (strongly stable in the squarefree sense). Since Hg, 5 (t) =
HE ) gin(y) we may as well assume that J itself is strongly stable.

Let Mon;(E) denote the set of monomials of degree j in E. Lexsegments,
stable and strongly stable subsets in Mon;(E) as well as lexsegment ideals
are defined in the obvious way. Naturally one defines the shadow of a subset
N C Mon;(E) to be the set

Shad(N) = {e1,...,en )N ={e;Au: ueN,i=1,... ,n}.

Let u =e; Aej, N+ Nej, be a monomial with 7; < iy < --- < 7;. Then we
set m(u) = 4, and for a subset N’ C Mon;(E) and an integer ¢ € [n] we let

m;(N) = [{u € N m(u) =i}, and set m<;(N) = >_"_, mj(N).

J

The following series of statements then lead to the Kruskal-Katona theo-
rem. At the end of this section we indicate where their proofs differ from the
proofs of the corresponding statements in the previous section.

Lemma 6.4.1. Let N' C Mon;(E) be a stable set of monomials. Then
Shad(N) is again a stable set and

(a) m;(Shad(N)) = m<,—1(N);

(b) [Shad(N)| = Y15 mai ().

The exterior version of Bayer’s theorem is the following

Theorem 6.4.2. Let £ C Mon,(E) be a lexzsegment and N C Mon;(E) a
strongly stable set of monomials with |L| < |N|. Then m<;(L) < m<;(N) for
1=1,...,n.
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Lemma 6.4.1 and Theorem 6.4.2 then yield the result that, like for
graded ideals in the polynomial ring, for each graded ideal J in the ex-
terior algebra there exists a unique lexsegment ideal J'* C E such that
Hpgy;(t) = Hgjpex(t). Thus it remains to understand the Hilbert series of a
lexsegment ideal.

Let a = (aj]) + (?7:11) + e+ (ak’“) be the binomial expansion of a with
respect to j. Then we define the binomial operator a +— a¥) by

N A aj_1>+---+(ak )
“ (j+1> (j k41

Again for convenience we set 0U) = 0 for positive integers j. The reader should
compare this operator with the operator a — a'?) defined in the previous
section.

In analogy to Proposition 6.3.7 one has in the exterior case

Proposition 6.4.3. Let L C Mon;(E) be a lexsegment with a = | Mon;(E) \
L|. Then _
| Mon,, 1 (E) \ Shad(£)| = a\¥).

Combining all the results we finally get the algebraic version of the Kruskal—-
Katona theorem.

Theorem 6.4.4. Let (hg, h1,...,hy,) be a sequence of integers. Then the fol-

lowing conditions are equivalent:

(a) Z?:o h;t! is the Hilbert series of a graded K -algebra E/J;

(b) there exists a monomial ideal J C E such that Z?:o h;t! is the Hilbert
series of E/J;

() ho=1and 0 < hji1 < hg-j) for all j with 0 < j < n.

Now if we apply Theorem 6.4.4 to the algebra K{A} and recall that
Hygqay(t) = Z?:o fi—1t? where f = (fo, f1,..., fa—1) is the f-vector of A,

we obtain

Theorem 6.4.5 (Kruskal-Katona). Let f = (fo,..., fa—1) be a sequence
of positive integers. Then the following conditions are equivalent:

(a) There exists a simplicial complex A with f(A) = f;
(b) fir1 < f;JH) for0<j<d-—2.

For the proof of Lemma 6.4.1 one observes that for a stable set of monomials
N C Mon;(E) the map

d:{ueN: m(u) <i—1} — {u € Shad(N): m(u) =i}, u—uAe

is bijective, cf. Lemma 6.3.2.
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The proof of Proposition 6.4.3 is based on the fact that for « € Mon;(E)
the complement of the lexsegment £, = {v € Mon;(E): v >jex u} can be
decomposed as follows

J
Mon;(E)\ L, = U{eki+1, cen T e A Aer,
i=1

where u = eg, Aep, A+ Aeg, with ky < ko < -+ < kj, and where
{€k;+1,- -, en P is the set of monomials of degree j —i+1 in the variables
€k;41,- -+ €n, cf. Lemma 6.3.6.

Similarly to the proof of Theorem 6.3.3 one uses in the proof of Theo-
rem 6.4.2 an order-preserving map «: Mon;(E) — Mon;(FE), this time defined
as follows: let u € Mon;(FE); if m(u) < n, then a(u) = u, and if m(u) = n
and u = v’ A ey, then a(u) = e, A v/, where k < n is the largest integer
such that k ¢ supp(u’). The sign of «(u) is chosen such that «(u), written in
normal form, has coefficient +1. Then one shows that if N = N UN" Ae,
is a stable set of monomials in Mon;(E), where N’ and N are monomials in
€1,---,€n—1, then a(min(N)) = min(N’).

With this at hand, the proof of Theorem 6.4.2 reads as follows: we show by
induction on n — the number of variables — that m<;(£) < m<;(N). Fori =n
this is just our assumption. So now let 4 < n and write £ = L' U L" A e, and
N = N'UN" ne,, with L', L") N” and N’ sets of monomials in eq, e, ..., e,_1.
It is clear that £’ is lexsegment, and that A/’ is stable. Hence if we show that
|£'| < |N|, we may apply our induction hypothesis, and the assertion follows
immediately.

It may be assumed that N’ and N'” are lexsegments. In fact, let A%, N**
be the lexsegments in ey, e, ..., e,_1 with IN*| = [N’| and IN**| = |[N"| and
set N = N* UN** A e,. Then it is not hard to see that A is again stable.

Now we are in the following situation: £ = £’ U L" A e, is a lexsegment,
and N = N UN" A e, is stable as before, but in addition N’ and N are
lexsegments. Assuming |£| < [NV, we want to show that |£'| < |N|.

The required inequality follows, since

min(N') = a(min(N)) <jex a(min(£)) = min(L")

and since £’ and N are lexsegments.

Problems

6.1. Let R be a standard graded K-algebra, let M and N be graded S-modules
and ¢: M — N a homogeneous homomorphism, cf. Appendix A.2.

(a) Show that Ker(M — N) is a graded R-module.

(b) Use (a) to show that R is isomorphic to S/I, where S is a polynomial ring
over K and I C S is a graded ideal.
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6.2. Let f1,...,fr € S = K[x1,...,2,] be a regular sequence with deg f; =
a;, and let I C Skbe the ideal generated by this regular sequence. Show:
(a) Hgyr(t) = [limy (Lt 4+t /(1 —1)" 7,

(b) e(S/1) = TT;-, ai.

6.3. Let R = S/I be a standard graded Cohen—-Macaulay ring of codimension
s = dim S —dim R. Then R is Gorenstein if and only if Ext$(R, S) = R(a) for
some integer a, see Corollary A.6.7. Use this characterization of a Gorenstein
ring to show that if R is Gorenstein, then the h-vector of R is symmetric. In
other words, if h = (hg, h1,...,h:) is the h-vector of R, then h; = h._; for
1=0,1,...,c. How are the numbers a and c related to each other?

6.4. Let S = K|[z1,...,x,] be the polynomial ring, and M a graded S-module.
We say that M has a d-linear resolution if the graded minimal free resolu-
tion of M is of the form

0— S(—d—s)% - = 8(—d—1)" = S(=d)® - M — 0.

Show that the ideal I = (z1,...,2,)% has d-linear resolution. What is the
multiplicity and the a-invariant of I?7 What are the Betti numbers of I7

6.5. Let A be a (d — 1)-dimensional simplicial complex. Show that the h- and
f-vectors of A satisfy the following identity Zf:o hit' (14+4)77% = Z?:o fioatt.

6.6. Let A be a simplicial complex. Show that the a-invariant of K[A] is
< 0. Use this result to conclude that there exists no monomial order < on
S = K|z1,x2,x3,24] such that in.(I) is a squarefree monomial ideal for the
ideal I = (23 — 2973, 73 — 1374, 23 — 2174).

6.7. Let A be Cohen—Macaulay simplicial complex with h-vector (hg, ..., hs)
and hs # 0. Show that h; > 0 for i =0, ...,s. Find a simplicial complex with
an h-vector such that h; < 0 for some 4.

6.8. Is the product of lexsegment ideals again a lexsegment ideal? Is the prod-
uct of (strongly) stable ideals again (strongly) stable?

6.9. A squarefree monomial ideal I C S = K[x1,...,z,] is called squarefree
stable if for all squarefree monomials v € I and for all j < m(u) such that x;
does not divide u one has (/%)) € I. The ideal I is called squarefree
strongly stable if for all squarefree monomials w € I and for all j < ¢ such
that z; divides v and x; does not divide u one has z;(u/x;) € I. Finally, I is
called a squarefree lexsegment ideal, if for all squarefree monomials u € I
and all squarefree monomials v with degu = degv and u <jex v it follows
that v € I. Show that defining property for (strongly) squarefree stable and
squarefree lexsegment ideals needs only be checked for the monomials in G(I).

6.10. Find the Hilbert functions of all 0-dimensional graded ring K [x1, x2, 23]/
of multiplicity 6.
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6.11. (a) Let N C Mong(S) and let £ C Mong(S) the lexsegment with |NV| =
|£]. Show that | Shad(£)| < | Shad(N)].
(b) Prove the corresponding results for monomial sets in the exterior algebra.

6.12. Let n > 1 be an odd number. Use Problem 6.11(b) and the Marriage
Theorem (see Lemma 9.1.2) to prove the following statement: let U be the
set of subsets of [n] of cardinality (n —1)/2 and V the set of subsets of [n] of
cardinality (n+1)/2. Then there exists a bijection ¢: U — V with the property
that A C (A) for all A C U.

Notes

In 1927 Macaulay [Mac27] characterized the possible Hilbert functions of stan-
dard graded K-algebras. The essential part of our proof of Macaulay’s theorem
is based on Theorem 6.3.3 due to Bayer [Bay82]. On the other hand, in clas-
sical combinatorics on finite sets, Kruskal [Kru63] and Katona [Kat68] found
the possible f-vectors of simplicial complexes. The h-vector of a simplicial
complex, which is obtained by linear transformation from the f-vector, was
introduced by McMullen [McMT71]. However, an algebraic interpretation of
the h-vector in terms of the Hilbert function of the Stanley—Reisner ring was
given by Stanley in [Sta75]. Later Clement and Lindstrém [CL69] succeeded
in generalizing Macaulay’s theorem and the Kruskal-Katona theorem in a
uniform way. It was also observed by Macaulay that the Hilbert function of
a graded ideal and its initial ideal are the same. This provides an efficient
method to compute Hilbert functions and related invariants, like dimension,
multiplicity or the a-invariant of a standard graded K-algebra. This technique
has been used in several papers to compute these invariants for determinantal
rings; see for example [Stu90], [HTr92], [BH92] and [CH94]. The formula for
the multiplicity in Corollary 6.1.7 is due to Peskine and Szpiro [PS74].
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Resolutions of monomial ideals and the
Eliahou—Kervaire formula

We introduce the Taylor complex, which for each monomial ideal provides a
graded free resolution, but which in general is not minimal. Then we give a
general upper bound for the graded Betti numbers of a graded module and
discuss when this upper bound is reached. This happens to be the case for
S/I when I is a stable monomial ideal. By means of Koszul homology the
graded Betti numbers of stable monomial ideals are computed. The formulas
which give these numbers are known as the Eliahou—Kervaire formulas. They
are used to derive the Bigatti-Hullet theorem. We conclude this chapter with
a squarefree version of the Eliahou—Kervaire formulas, and the comparison of
the graded Betti numbers of a squarefree monomial ideal over the symmetric
and exterior algebra.

7.1 The Taylor complex

Let I be a monomial ideal in the polynomial ring S = K|[zy,...,2,] with
G(I) ={u,...,us}.
The Taylor complex T associated with the sequence uyq, ..., us is a com-

plex of free S-modules defined as follows: let T} be a free S-module with basis
€1,...,es. Then

(1) T, = N'Ty for i = 0...,s. In particular, the elements ep = ej, N ej, A
< Nej, with F'={j1 < jo <--- <j;} C[s] form a basis of T;.
(2) the differential 0: T; — T;_1 is defined by

. Up
d(er) = E (—1)7FD er\{i},
ier Ur\{i}

where for G C [n], ug denotes the least common multiple of the monomials
u; with ¢ € G, and where o(F,i) = |{j € F": j <i}|.
If we assign to each er the degree equal to degup, then the differential 0

is a homogeneous map of graded free modules.
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It is easily verified that 0 o @ = 0, so that
T 0Ty —T5_1— - —Ty Ty -T5g — 0
is a graded complex with rank T; = () for all ¢ and Ho(T) = S/I.

Theorem 7.1.1. Let I C S be monomial ideal with G(I) = {u1,...,us}.
Then the Taylor complex T for the sequence uq,...,us is acyclic, and hence
a graded free S-resolution of S/I.

Proof. We prove the theorem by induction on s. For s = 1 the assertion is triv-
ial. So now let s > 1 and assume that the Taylor complex T’ for the sequence
U1, ...,us_1 is acyclic. Note that T’ can be identified with the subcomplex of
T spanned by the basis elements ep with F C [s — 1]. Let G = T/T’ be the
quotient complex. Then Gy = 0 and for each ¢ > 0, the module G; is free with
basis epysy where F' C [s — 1] and |F| = i — 1. The differential on G is given
by

o 7 uFU{s}
derugsy) = > (—1)7F) —=ep 0y,
; URULs\ (i}

Hence G is isomorphic to the Taylor complex (homologically shifted by 1)
for the sequence vy,...,vs_1 with v; = lem(u;, ug)/us for ¢ = 1,...,s — 1.
In particular, we have Hy(G) =0, H1(G) = S/(v1,...,vs—1), and our induc-
tion hypothesis implies that H;(G) = 0 for ¢ > 1. Thus from the long exact
homology sequence arising from the short exact sequence

0—T —T—G—0
we obtain the exact sequence
0 — H1(T) — H1(G) — Ho(T") — Ho(T) — 0,

and H;(T) =0 for ¢ > 1.

We have Ho(T') = S/(u1,...,us—1) and Ho(T) = S/(uq,...,us), and
the homomorphism Hy(T’) — Hy(T) is just the canonical epimorphism
S/(u1, ..., us—1) = S/(u1,...,us), whose kernel is (uy, ..., us)/(u1,...,us—1)
which is isomorphic to H1(G) = S/(v1,...,vs—1). This isomorphism is estab-
lished by the connecting homomorphism H;(G) — Hy(T’), since under this
homomorphism the homology class of e4 is mapped to the residue class of ug
modulo (u1,...,us—1). Therefore, Hy(G) — Ho(T’) is injective and H(T) = 0
as well. O

Corollary 7.1.2. Let I C S be a monomial ideal minimally generated by s
monomials. Then 3;(S/I) < (3) fori=1,....s.

It should be noted that the Taylor resolution of a monomial ideal I is
rarely a minimal resolution. For example, if |G(I)| = s > n, then the Taylor
resolution can never be minimal because all minimal graded free resolutions
have length at most n; see Appendix A.3.
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7.2 Betti numbers of stable monomial ideals

7.2.1 Modules with maximal Betti numbers

Let S = Klz1,...,2,] denote the polynomial ring in n variables over an
infinite field K and m = (z1,...,x,) its graded maximal ideal. Furthermore
let M be a finitely generated graded S-module. In Proposition 4.3.12 we gave
an upper bound for the graded Betti numbers of M in terms of the annihilator
numbers of an almost regular sequence y on M which forms a K-basis of S;.
Thus in particular for generic annihilator numbers (cf. Remark 4.3.10) we
have

n—i k1
Biit;(M) < Z (n ifl )akj(M) forall ¢>0 andall j. (7.1)
k=0

We say that M has maximal Betti numbers if equality holds in (7.1).

Theorem 7.2.1. Let y be a generic sequence on M. Then the following con-
ditions are equivalent:

(a) M has mazimal Betti numbers.
(b) For all j > 0 and all i the multiplication maps

vir Hi(yr, - yims M)(=1) — Hj(yr, -, yi-13 M)

are the zero maps.
(c) For all j > 0 and all i one has mH;(y1,...,yi—1; M) =0.

If the equivalent conditions hold, then mA;(y; M) = 0 for all i.

Proof. (a) < (b): To simplify notation we set H; (i) = H;(v1,- .., y:i; M)x and
A(i)g = Ai(y; M)y, for all i, j and k. Inspecting the proof of Proposition 4.3.12
we see that equality holds in (7.1) if and only if the sequences

0—>H1(i—1)]€ —>H1(i)k —>A(i—1)k_1 —>0, (72)
and for j > 0 the sequences
0—>Hj(i—1)k—>Hj(i)k—>Hj_1(i—1)k_1—>O (73)

are all exact. However, this is the case if and only if the sequence y satisfies
condition (b).

(a) = (¢): Let U C GL(n; K) be the nonempty Zariski open subset of
GL(n; K) such that v(x) is generic for v € U. Then our given generic sequence
Y = Y1,-..,Yn is of the form y = o(x) for some o € U. Let V be the set of
y € Sy for which there exists v € U with v(X) = y1,. -+, Yi—1,Y, Yit1,- - - Yn-
Then V' C S is a Zariski open set of S; and it is nonempty, because y; € V.
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For each y € V we have that y1,...,%i-1,Y,Yi+1,---,Yn iS generic. Hence,
since (a) = (b), it follows that y1,...,¥i—1, Y, Yi+1,- - -, Yn satisfies (b), which
implies that the multiplication map y: H;(¢ — 1)(—1) — H;(i — 1) is the zero
map for all j > 0, all 4 and all y € V. Next we observe that the nonempty
Zariski open set V' C S generates S; as a K-vector space. Indeed, if this
were not the case V' would be contained in a proper linear subspace L C Sj.
Then this would imply that V' N S; \ L = @) — a contradiction, since S \ L is
a nonempty Zariski open subset of 5.

The implication (c¢) = (b) is trivial.

Since, as we have seen, the K-linear span of V is equal to S7, it follows
then that mH;(i — 1) = 0 for all j > 0 and all ¢, as desired.

Finally, (c) together with the exact sequences (7.2) yield that mA4,(y; M) =
0 for all 2. O

Suppose M has maximal Betti numbers, and set 3;; = §;;(M) and «;; =
a;;(M). Then for all ¢ and j we have

n—u

Bii+j = Z (n ;f 1_ 1) Q- (7.4)

k=0
These equalities are equivalent to the following polynomial identities

n—1

50]5j+2/611+jt5 *Oénjsj‘i’zak] 1+t)n k= 1

=1 k=0
Substituting ¢ by u — 1, we obtain the identities

n—1

ﬂOJSJJrZ ,6’”4_]lfu),s]—ozms]JrZakjufl)”k 1

k=0

Expanding (1 — u)* and comparing coefficients yields the following equations

n .
a2
Op—rj —Opn_r_1,5 = E (—1)1+7 <’r’)l6i’i+j for r= 1, ey,

=1

where we set a_; ; = 0 for all j. These equations finally imply that

Qp—rj = ZZ(— H'k( )ﬁz i4j forr=0,...,nandall j. (7.5)

k=0 i=1

Thus the generic annihilator numbers of a module with maximal Betti num-
bers are determined by its Betti numbers.
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7.2.2 Stable monomial ideals

Strongly stable monomial ideals appear as generic initial ideals, as we have
seen in Chapter 4. Here we want to compute the graded Betti numbers of
such ideals. Indeed, they can even be computed for stable monomial ideals.
Recall from Chapter 6 that a monomial ideal I C S is called stable if for all
monomials v € I and all 7 < m(u) one has z;u" € I, where v’ = u/x,,(,) and
m(u) denotes the largest index j such that x; divides w.

We use Koszul homology to compute the Betti numbers. Let I C S be an
ideal. For each i, K;(x1,...,z,;S/I) is a free S/I-module with basis ep with
F C [n] and |F| =i, where ep = e, Aej, A---Nej, for F={j1 <jo<---<
Ji—1 < Ji}-

By abuse of notation we denote the residue class modulo I of a monomial
u in S again by u.

Theorem 7.2.2. Let I C S be a monomial ideal, and let m = (x1,...,2,) be
the graded maximal ideal of S. Then the following conditions are equivalent:

(a) I is a stable monomial ideal.
(b) mH,;(zpn, Tn-1,...,2;;S/I) =0 fori,j=1,...,n.
(¢c) mHy (zp, p—1,...,255/1) =0 fori=1,...,n.

If the equivalent conditions hold, then x,,xp_1,...,T1 1S G generic sequence
for S/I and for eachi, j, a basis of the K -vector space H;(xy, Tn—1,...,2;;S/I)
s given by the homology classes of the cycles

u'ep Nemuwy, weG), |Fl=j—1, i<minF, maxF <m(u).

Proof. The implication (b) = (c) is trivial.
(¢) = (a): Since for each 4, the annihilator module

(I, xig1y -y Xn)is i) (L, Tig1y ooy )
is a factor module of Hy(xy,...,x;;5/I), it follows that
m((I, g1, xn)isz) C (Lxig1,...,2y) for i=1,....n. (7.6)

Now let w € I and suppose that m(u) = 4. Then v = u/z; and v €
(I,Zit1,...,2n):sx; and so zju’ € (I, zi41,...,2,) for all j, by (7.6). Since
xj, does not divide v’ for k > ¢ + 1 it follows that z;u’ € I for j < ¢. This
shows that I is a stable monomial ideal.

(a) = (b): We will show that H;(z,,zn—1,...,2;;S/I) has the speci-
fied basis. Assuming this, let ¢ = [u'er A ep )] be a homology class in
Hj(xn,xn-1,...,2;;S/I). Then of course zjc = 0 for j = ¢,...,n. But we also
have ;¢ = 0 for j < 4, since xjc = [z;u'ep Ay, ()] and since z;u" € I, because
I is a stable monomial ideal. Thus it follows that mH; (2, £p—1,...,2:;S/I) =
0, as desired.
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For our further discussions we set H;(i) = H;(%n, Tp-1,...,%;;S/I) and
AG) = (I, g1, xn):sx;)/ (I, Tit1, -, Tpn). In order to prove the state-
ment concerning the basis of H; (i) we proceed by induction on n—i. If i = n,
we only have to consider Hj(n) which is obviously minimally generated by
the homology classes of the elements u'e,, with « € G(I) such that m(u) = n.

Now assume that ¢ < n and that the assertion is proved for ¢+ 1. Then for
H,(i+1) we have a basis as described in the theorem and hence mH;(i+1) =0
for all j > 1, as we have seen before. We also have mA(i) = 0, since [ is a stable
monomial ideal. Thus the standard long exact sequence of Koszul homology
(see Theorem A.3.3) splits into the short exact sequence

0— Hi(i+1)— Hy (i) = A(i) — 0,
and for j > 0 into the short exact sequences
0— Hjy1(i+1) = Hjpa (i) = H;(i +1) — 0.

For each j, the map H,y1(i + 1) — Hjy1(4) is just the inclusion map,
while H;i1(i) — H;(i + 1) is the homomorphism induced by the map
Kjp1(xn,...,2;8/1) = Kj(zp,...,z41;5/I) which assigns to each element
ag+ a1 Ne; € Kjp1(Tn,..., 24 8/1) with ag € Kjp1(zn,...,zi41;5/I) and
a1 € Kj(zp,...,2i41;S/I) the element aq, see Appendix A3. The end terms in
these exact sequences are K-vector spaces with the specified bases, according
to our induction hypothesis.

A K-basis of A(i) is given be the residue classes of the elements ' with
u € G(I) and m(u) = 4. A preimage of «’ under the map H; (i) — A(7) is the
homology class [u'e;]. These homology classes together with the basis elements
of Hyi(i + 1) establish the desired basis for Hy ().

Similarly, let [u'er A €y, ()] be a basis element in H;(i + 1) with v € G(I)
and the conditions on F' as described in the theorem. Then u'e; A ep A Em(u)
is a cycle in Hj1(i) whose homology class is mapped to [u'ep A €,,(,,)] under
the homomorphism H;1 (i) — H,;(i+ 1). Thus the homology classes of these
cycles together with the basis elements of H;14(i+1) form the basis of H;41 (i),
as asserted.

Finally, assuming that I is strongly stable, Proposition 4.2.4(c) implies
that I is Borel-fixed which according to Proposition 4.2.6(b) implies that
gin_ _ (I) = I. Hence it arises directly from the definition of a generic sequence
that x,, Xn_1,...,21 is generic on S/I. |

By the preceding theorem we can compute dimg H;(x1, ..., 2pn;S/1)i4, for
a stable ideal just by counting the basis elements given there, and observing
that a homology class [u'ep A€y y)] in Hi(21,. .., 2,;5/1) is of degree i+j—1
if and only if w is of degree j. Thus if we denote by G(I); the set of elements
of G(I) which are of degree j, we obtain the following important result:

Corollary 7.2.3 (Eliahou—Kervaire). Let I C S be a stable ideal. Then
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(@) Bii+i (1) = Xuean), ("7,
(b) projdim S/I = max{m(u):u € G(I)};
(c) reg(I) = max{deg(u):u € G(I)}.

For a stable monomial ideal I C S, let my; be the number of monomials
in w € G(I); with m(u) = k. Then for ¢ > 0 the Eliahou-Kervaire formula for
the Betti numbers implies

Biit+i (S/1) = Bi—1,i—145(1) ) (7.7)
-2 ()Rl

Since S/I has maximal Betti numbers, as follows from Theorem 7.2.1 and
Theorem 7.2.2, we may compare (7.7) with formula (7.4) and obtain

Corollary 7.2.4. Let I C S be a stable monomial ideal with generic annihi-
lator numbers o;j. Then o;; = mp—; ;5 fori=0,...,n—1 and all j.

7.3 The Bigatti—-Hulett theorem

In Chapter 6 we have seen that for any graded ideal I C S there is a unique
lexsegment ideal I'®* such that S/I and S/I'** have the same Hilbert function.
Now we will present the following important property of I'°*.

Theorem 7.3.1 (Bigatti—Hulett). Let K be a field of characteristic 0, S =
Klxy,...,2,] the polynomial ring in n variables and I C S a graded ideal.
Then

Biiti(I) < Biig; (I'*)  for all i and j.

In other words, among all ideals with the same Hilbert function, the lexsegment
ideal has the largest Betti numbers.

Proof. By Corollary 6.1.5, S/I and S/ gin_(I) have the same Hilbert function,
and by Corollary 3.3.3 we have 3; ;4;(I) < 5, ,+;(gin_ (1)) for all 7 and j. Thus
we may replace I by gin_(I). Moreover, gin_(I) is a strongly stable monomial
ideal, as we have seen in Proposition 4.2.6. Hence we may as well assume that
I is a stable monomial ideal. By Eliahou-Kervaire (Corollary 7.2.3) we then
have

)= 3 ("), (78)

We denote by I ;) the ideal generated by all elements of degree j in I, and set
mi (1)) = me(G(15)) and m<p(I(jy) = m<i(G(I))), cf. Subsection 6.3.
Then G(I); = G(I(jy)\ G(mI;_1y). Accordingly, we write the right-hand side
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of (7.8) as a difference A — B, where A is the sum of the binomials (m(ul)fl)
taken over all u € G(I;y) and B is the sum of the same binomials taken over
all u € G(mI;_yy). Then

Biivi(I) =A—-B

with
1= 3 (M) Fm ()
= é(mq(w —mer-1(I5)) (k f 1)
o E ) ()
—mentin (") - Zm<k (i21)
and

B ) Emenl(7)

ueG(mlg_1y)
- E—1
= Zmék(1<j—1>)( ; >
k=1

The last equation results from Lemma 6.3.2.

Now the theorem follows at once from the above presentation of 3; ;4,(I) as
the difference of the terms A and B, if we observe that m<, (1)) = dimg I; =
dimg (I'); = m<n ((I') (), and that, according to Theorem 6.3.3, one has
m<i (1) 0y) < m<i (L) for all k and £. O

7.4 Betti numbers of squarefree stable ideals

In this section we study squarefree stable ideals. The ultimate goal of this
section is to derive Eliahou—Kervaire type formulas for the graded Betti num-
bers of squarefree stable ideals. This will enable us in Chapter 11 to prove
a theorem for squarefree monomial ideals analogous to the Bigatti—Hulett
theorem.
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A squarefree monomial ideal I C S = Klx1,...,2,] is called squarefree
stable if for all squarefree monomials u € I and for all j < m(u) such that
x; does not divide u one has x;(u/Tp ) € I.

We denote by x the sequence 1, ..., z,, and also denote for simplicity the
residue class modulo I of a monomial u in S again by u. Then we have

Theorem 7.4.1. Let I C S be a squarefree stable ideal. Then for each i > 0,
a basis of the homology classes of Hj(x;S/I) is given by the homology classes
of the cycles u'ep N € (y) with

uweG(), |Fl=j7—-1, max(F)<m(u) and F Nsupp(u)=0.

Proof. A minimal free S-resolution of S/I is Z™-graded; in other words, the
differentials are homogeneous homomorphisms and, for each i, we have F; =
@D, S(—aj;) with a;; € Z". Moreover, by virtue of Theorem 8.1.1, all shifts
a;; are squarefree, i.e. a;; € Z" is of the form ), . €, where F' C [n], and
where €1, €2, . .., €, is the canonical basis of Z™. Thus, due to Corollary A.3.5 it
follows that H;(x; S/I) is a multigraded K-vector space with H;(x;.S/I)a = 0,
if a € Z™ is not squarefree. Hence if we want to compute the homology module
H,(x; S/I) it suffices to consider its squarefree multigraded components.

In order to simplify notation we set H;(i) = H;(xn, Tn-1,...,2;;S/I).
Then for each 0 < j < n, there is an exact sequence whose graded part for
each a € Z" yields the long exact sequence of vector spaces

- Hj(i +1)a — Hj(i)a - j—l(i +Da—e; = Hj—l(i +1)a

s H i (i)a — -

We now show the following more precise result: for all j > 0, all0 <i <n
and all squarefree a € Z", H;(i)a is generated by the homology classes of the
cycles

u'ep Aepy, ueG(), |[Fl=j-1

with
i <min(F), max(F)<m(u), FNsupp(u)=0 and

F Usupp(u) = {i: a; # 0}.

The proof is achieved by induction on n — 7. The assertion is obvious for
1 = n. We now suppose that ¢ < n. For such ¢, but j = 1, the assertion is
again obvious. Hence we assume in addition that j > 1. We first claim that

Hj_1(i+1)a =5 i—1(i+1)a

is the zero map. Since a € Z" is squarefree, the components of a are either
0 or 1. If the ¢th component of a is 0, then a — ¢; has a negative component;
hence H;_1(i 4+ 1)a—e, = 0. Thus we may assume the ith component of a is
1. Then a — ¢; is squarefree and, by induction hypothesis, H;_1(i + 1)a—,
is generated by the homology classes of cycles of the form u'ep A ep,(,) With
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i & supp(u). Such an element is mapped to the homology class of u/z;e p Ay, (u)
in H;_1(i + 1)a. However, since I is squarefree stable, we have v'z; € I, so
that u'zer A ey = 0.

From these observations we deduce for all j > 1 we have the short exact
sequences

O_’Hj(i +1)a — Hj(i)a — j*l(i +Da—e, — 0.

The first map H;(i+1)a — H;(i)a is simply induced by the natural inclusion
map of the corresponding Koszul complexes, while the second map H;(i)a —
H;_1(i+ 1)a_, is a connecting homomorphism. Given the homology class of
acycle z = u'ep Ay, ) in Hj_1(i+1)a_e,, it is easy to see that, up to a sign,
the homology class of the cycle u’'e; A e A €y, () in Hj(i)a is mapped to [z].
This implies all of our assertions. a

As an immediate consequence we obtain

Corollary 7.4.2. Let I C S be a squarefree stable ideal. Then

(@) Bii+i(I) = Zucam, (M),
(b) projdim S/I = max{m(u) — deg(u) + 1: v e G(I)};
(c) reg(I) = max{deg(u): u € G(I)}.

Let I be a squarefree stable monomial ideal. We denote by I};) the ideal
generated by all squarefree monomials of degree j in I, and set mg(If;)) =
mi(G(I;)) and m<y(I;;;) = m<x(G(I};))), cf. Subsection 6.3. Then G(I); =
Gy \ Gy N mlj—yy).

A monomial [ is called squarefree strongly stable if for all squarefree
monomials v € I and for all j < ¢ such that z; divides v and x; does not
divide u one has z;(u/z;) € I, and that I is called squarefree lexsegment
if for all squarefree monomials v € I and all squarefree monomials v with
degu = degv and u <jex v it follows that v € I. By Lemma 6.4.1 together
with Theorem 6.4.2 it follows that for each squarefree monomial ideal I there
exists a unique squarefree lexsegment ideal, denoted 9%, with the property
that S/I and S/I°9** have the same Hilbert function.

In Corollary 11.3.15 we prove the squarefree version of the Bigatti-Hullet
theorem. For its proof we will need the following.

Theorem 7.4.3. Let I C S be a squarefree strongly stable ideal. Then
Biiri(I) < Biyin (I°) for all i and j.

Proof. By Corollary 7.4.2 we have (3;;1;(I) = C — D, where
m(u) — j
C fr—
> ("),
ue€G (1))

and
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m(u) - j
D= .
> (M)
u€G (I Nmly;_1y)

Furthermore,

k=1
- (n;]) 4 :mgkgb])c - j) _ §m<k(lm) (’f _Z + 1)
_ m<n(1m)<n Z_]> - gm@(ﬂﬂ)((k_z . 1) - (k ;j>)

On the other hand, Lemma 6.4.1 implies that

p=> ¥ (") =Tmeawon (")
k=j weGnmly;_q)) k=j

m(u)=k

Thus for all 4 and j we obtain
n-7\ k-
Biii(I) = m<n(fm)( ; ) - Zm<k(fm)(i B 1) (7.9)
k=j
- ngk—l(f[ju)( ; ])-
k=j

It follows from Theorem 6.4.2 that msk(I[S;]lleX) < m<i(Ifg) for all k and /.
Using this fact, the assertion follows from formula (7.9). O

7.5 Comparison of Betti numbers over the symmetric
and exterior algebra

Let I C S be a squarefree monomial ideal, and E the exterior algebra of the K-
vector space V' with basis ey, ..., e,. We denote by J C F the corresponding
squarefree monomial ideal in the exterior algebra F, that is, the ideal J C E
with e;; A -+ Ae;, € G(J) if and only if x;, - -~ z;, € G(I).
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Since S/I is a Z™-graded module, it admits a minimal multigraded free

S-resolution
F:- —F—F— Fy— S/I —0,

where F; = @ ,cpn S(—a)fialS/D); see the corresponding statements and
proofs for graded modules in Appendix A.3. The numbers (;.(S/I) =
dimg Tor? (K, S/I), are called the multigraded Betti numbers of S/I.
Similarly, E/J has a multigraded free E-resolution. The purpose of this sub-
section is to compare the multigraded Betti numbers of E/J with those of
S/I.

Fora = (ai,...,a,) € Z™ we set |a] = Y., a; and supp(a) = {i: a; # 0}.
The following theorem yields an interpretation of the Z"-graded components
of Tor? (K, J ) in terms of reduced simplicial homology.

Theorem 7.5.1. Let A be a simplicial complex on [n], a € N* and W =
supp(a). Then, for alli > 0, we have

Tor? (K, Ja)a = H®772( Ay K).

Proof. By Theorem A.8.2, Torf, (K, K{A))a may be identified with the com-
ponent of multidegree a of the Cartan homology H;i1(e1,...,e,; K{A}). A
basis of Cjt1(eq,...,en; K{A})a is given by
6FX(aF), Fe Ay, |ap‘ =i+1,
!

where ap = (ay,...,a;) with a’; = a; for j ¢ F and a; = a; — 1 for j € F'.

N

Recall from Section 5.1.4 that (K{Aw},e) is the complex of K-vector
spaces

L_c K{Aw}ia LN K{Aw}; _° K{Aw}isa —c 5 ...
with e = e; + e3 + - - - + ¢e,,. We define a K-linear map
piv1: Civi(er, ... en; K{A})a — (K{Aw}, €)jaj—i—1

by setting ¢(epx(@r)) = ep. We observe that ;1 is an isomorphism of K-
vector spaces, and that the family ¢ = (¢;) of maps is compatible with the
differential of both complexes. Therefore, in view of Definition 5.1.7 we obtain
the isomorphisms

TorZE(K, JA)a & Torﬂl(K,K{A))a
~ gAY K {Ay )} e) 2 HRIZ2(Ay K),
as desired. O

Let M be a Z"-graded A-module where A = S or A = E. The multi-
graded Poincaré series of M over A is defined by

Pii(tis)=> > Bl (M)t's
i>0 acZn

A comparison of Theorem 7.5.1 and Theorem 8.1.1 now immediately yields
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Corollary 7.5.2. Let I C S be a squarefree monomial ideal and J C E the
corresponding monomial ideal in the exterior algebra. Then

tia
E/Jts ZZ L(S/1) S 15"

i>0 acZn HJESupp(a) (1

From this identity of formal power series we deduce

Corollary 7.5.3. The ideal I has a d-linear resolution over S if and only if
J has a d-linear resolution over E.

Problems

7.1. Show that the ideal I = (23, 712923, #323) in K|[x1, 72, 23] has a minimal
Taylor resolution.

7.2. Show that a monomial ideal generated by m elements has projective
dimension at most m — 1. Give an example of a graded ideal of projective
dimension > 3 which is generated by 3 elements.

7.3. Let u € S be a monomial. The principal stable ideal generated by
u is the smallest stable monomial ideal Containing u. Let I be the principal
stable ideal generated by u = x{'x5?---2%". Describe the elements of G(I)
and compute the graded Betti numbers of I .

7.4. Give an example of a monomial ideal I with property that 3, ;1 ;(I) =
Biit+j (I lex) for all 4, j which is not a lexsegment ideal, even after permutation
of the variables.

7.5. Let I be a stable or squarefree stable ideal, and suppose that §; ;1;(I) #
0. Show that Bk kx+,(I) #0 for k=0,...,1

7.6. Compute I'** for I = (22,23, 22) and compare their graded Betti num-
bers.

7.7. Is the polarization of a (strongly) stable ideal again (strongly) stable?

7.8. Compute the extremal Betti numbers of a stable monomial ideal in terms
of the numbers m(u) and deg(u) with u € G(I).

7.9. Let M be a graded E-module (see Chapter 5 ). Show that projdim M <
oo if and only if M is free.
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Notes

Taylor introduced in her thesis [Tay66] in 1966 a complex resolving mono-
mial ideals, which nowadays is called the Taylor complex. This complex is
in general not minimal. Eliahou and Kervaire [EK90] succeeded in describing
the minimal free resolution of the important class of stable monomial ide-
als. Bigatti [Big93] and Hulett [Hul93] used this Eliahou-Kervaire resolution
and independently proved that, for the case of characteristic 0, among the
graded ideals with a fixed Hilbert function, the lexsegment ideal possesses the
maximal graded Betti numbers. For positive characteristics a similar result
was obtained by Pardue [Par94] by using the technique of polarizations. The
squarefree versions of these theorems were studied in [AHH98] and [AHH0Oa)].
The result referring to the comparison of Betti numbers over the exterior al-
gebra and the polynomial is taken from [AAHO00].
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Alexander duality and resolutions

The Alexander dual of a simplicial complex plays an essential role in com-
binatorics and commutative algebra. One of the fundamental results is the
Eagon—Reiner theorem, which says that the Stanley—Reisner ideal of a sim-
plicial complex has a linear resolution if and only if its Alexander dual is
Cohen—Macaulay. After discussing this theorem in detail, we introduce the
notion of componentwise linear ideals and sequentially Cohen-Macaulay sim-
plicial complexes, and explain the relationship of these concepts with shella-
bility.

8.1 The Eagon—Reiner theorem

8.1.1 Hochster’s formula

A very useful result to compute the graded Betti numbers of the Stanley—
Reisner ideal of simplicial complex is the so-called Hochster formula. To state
the formula we introduce some notation and terminologies.

Let A be a simplicial complex on [n]. For a face F' of A, the link of F in
A is the subcomplex

linkn F={GeA:FUGe A, FNG = 0}.

Thus in particular linka ) = A. For a subset W of [n] the restriction of A
on W is the subcomplex

Ay ={FeA:FCW}.

Finally, the notation fIq(A; K) stands for the gth reduced homology group
of A with coefficient K, where K is a field; see Chapter 5.

Let S = Klz1,...,z,] denote the polynomial ring in n variables over
a field K with each degz; = 1. Let A be a simplicial complex on [n] and

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 129
DOI 10.1007/978-0-85729-106-6_8, (©) Springer-Verlag London Limited 2011


http://dx.doi.org/10.1007/978-0-85729-106-6_8

130 8 Alexander duality and resolutions

I its Stanley—Reisner ideal. We observe that I is Z"-graded, so In ad-
mits a minimal Z™-graded free S-resolution, simply because the kernel of a
Z"-graded homomorphism is again Z"-graded. (cf. Appendix A.2 where it is
shown that a graded module has a minimal graded free resolution). It follows
that Tor;(K,IA) is a Z™-graded K-vector space.

Since the Koszul complex K (x; ) is a complex of Z"-graded modules it
follows that the Koszul homology modules H;(x; I[a) are Z"-graded K-vector
spaces and for all a € Z" one has

Tor;(K,Ia)a = Hi(x;1a)a forall aeZ™. (8.1)

The corresponding isomorphism for graded modules is given in Corollary A.3.5.
The numbers
Bi.a(Ia) = dimg Tor; (K, Ia)a

are called the multigraded or Z"-graded Betti numbers of [4.

An element a € Z"™ is called squarefree if a has only the integers 0 and 1
as possible entries. We set supp(a) = {i: a; # 0}.

The following fundamental theorem of Hochster gives a very useful de-
scription of the Z™-graded Betti numbers of a Stanley—Reisner ideal.

Theorem 8.1.1 (Hochster). Let A be a simplicial complex and a € Z™.
Then we have:

(a) Tor? (K, Ia)a = 0 if a is not squarefree;
(b) if a is squarefree and W = supp(a), then

Tor? (K, Ia)a = HWIZ"2(Aw; K)  for all i

Proof. We compute Tory (K, Ir)a by means of formula (8.1). For F C [n],

F={jo<j1<--<ji}, weset ep =¢€j, Aej1 A---Aej,. The elements ep

with F' C [n] and |F'| =i form a basis of the free S-module K;(x; S). The Z"-

degree of ep is €(F') € Z", where €(F') is the (0, 1)-vector with supp(e(F)) = F.
A K-basis of K;(x;1)a is given by

xPep, b+e(F)=a, supp(b)¢ A.
We define the simplicial complex
A,y ={F C [n]: F Csupp(a), supp(a\ e(F)) & A}.

Let C(Aa; K)[—1] be the oriented augmented chain complex of A, shifted by
—1 in homological degree, cf. Subsection 5.1.4. Then we obtain an isomorphism

of complexes }
a: C(Ax; K)[-1] — K;(x514)a,

where

Qi Ci—l(Aa; K) - KZ(X7 IA)&? F= [jOmjla T 7ji—2] = Xa_E(F)eF-
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It follows that
Hi(x;1a)a = Hi1(Aa; K). (8.2)

We begin with the proof of (a): Suppose a is not squarefree. Then there exists j
such that a; > 1. We define a(r) = (a1,...,a;+7,...,ay) for r > 0. It follows
from the definition of A, that Ay = Ay, for all 7 > 0. Since H;(x;a) has
only finitely many nonzero graded components there exists r > 0 such that
H;(x;IA)a(ry = 0. Thus by (8.2) we have

Hi(X;IA)a = ~ifl(Aa;]:{) = ﬁifl(Aa(r);K) = HZ(X7 IA)a(T) =0.

Proof of (b): Let a € Z™ squarefree with W = supp(a). Then F' € A,
if and only if F C W and W \ F ¢ Ay,. This is equivalent to saying that
F e (Aw)v

Thus (8.1), (8.2) together with Proposition 5.1.10 yield

Tor? (K, Ia)a = Hi_1((Aw)V; K) = HVIZ=2( Ay K), (8.3)
as desired. O

Ezample 8.1.2. Let A be a simplicial complex on the vertex set {1,2,3,4,5}
with the facets {1,2,3,4}, {2,5} and {4,5}. Let a = (1,0,1,0,1); then
supp(a) = W = {1,3,5}. One has f{‘W|_i_2(AW;K) = 0 unless 7 = 1 and
HWI=3(Ay: K) = K. Hence i a(Ia) =0 unless i = 1 and (1 o(I4) = 1.

The Z"™-graded components of Tor;9 (K, IA) can also be expressed in terms
of certain links. For this we need

Lemma 8.1.3. Let A be a simplicial complez on [n] and W C [n] with W &
A. Let F =[n|\W € AV. Then

linkAv F= (Aw)v

Proof. Each of linkav F and (A )Y is a simplicial complex on W. Let G C W.
Then G € (Aw)Y if and only if W\ G € A. On the other hand, G € linkav F'
if and only if F UG € AV. In other words, G € linkav F' if and only if
[n]\ (FUG) =W\ G does not belong to A. O

Corollary 8.1.4. Let A be a simplicial complex, a € Z"™ be squarefree and
F = [n]\ supp(a). Then

Torf(K, Ip)a = ~z‘ﬂ(linkAv F;K) forall i

In particular it follows that the graded Betti number (;;(Ia) of Ia can be
computed by the formula
Bij(Ia) = > dimg H;_1(linkav F; K).
FeAV,|F|=n—j

Proof. Lemma 8.1.3 and (8.3) yield the desired isomorphism. The formula for
Bij(1a) follows from the first part since linkav F =0, if FF ¢ AV. O



132 8 Alexander duality and resolutions
8.1.2 Reisner’s criterion and the Eagon—Reiner theorem

The K-algebra K[A] = S/I4 is called the Stanley—Reisner ring of A. We
say that A is Cohen—Macaulay over K if K[A] is Cohen-Macaulay.

Lemma 8.1.5. Every Cohen—Macaulay simplicial complex is pure.

Proof. Let A be Cohen—Macaulay over K. According to Lemma 1.5.4 the
minimal prime ideals of I5 correspond to the facets of A. Hence A is pure
if and only if all minimal prime ideals of In have the same height. However
this is guaranteed by the assumption that K[A] is Cohen-Macaulay; see Ap-
pendix A.5. O

The following result is known as the Reisner criterion for the Cohen—
Macaulay property of the Stanley—Reisner ring.

Theorem 8.1.6 (Reisner). A simplicial complex A is Cohen—Macaulay over
K if and only if, for all faces F' of A including the empty face O and for all
i < dimlinka F', one has H;(linka F; K) = 0.

Proof. We use local cohomology to prove the theorem. Let a € Z". By Theo-
rem A.7.3 we have

HL(K[A)a=0 if a; >0 forsome i, (8.4)
and
H (K[A])a = H;_p|—1(linka F; K) (8:5)

with F' = supp(a) if a; < 0 for all 3.
Let dim A = d — 1. By virtue of Corollary A.7.2 and Theorem A.7.1 in

Appendix A.7 it then follows that A is Cohen—Macaulay over K if and only
if

Hi_pj—1(linka F;;K) =0 forall FeA andal i<d. (8.6)

Assume now that A is Cohen—Macaulay over K. Then A is pure and hence
dimlinks F = d — |F| — 1. Therefore, (8.6) implies that H;(linka F; K) = 0
for i < dimlink F'.

Conversely, assume that for all F' € A including the empty face () and for
all ¢ < dimlinka F', one has ﬁ]i(linkA F;K)=0.Let F € A, set I' =linka F
and let G € I'. Then linkp G = linka(F U G), and so H;(linkp G; K) = 0
for all ¢ < dimlink; G. Thus proceeding by induction on the dimension of A,
we may assume that all proper links of A are Cohen—Macaulay over K. In
particular, the link of each vertex of A is pure. Thus all facets containing a
given vertex have the same dimension.

We may assume that dim A > 0, since A is Cohen—Macaulay over K if
dim A = 0. Indeed, in this case K[A] is a 1-dimensional reduced standard
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graded K-algebra, and hence Cohen—-Macaulay. We then observe that A is
connected. This follows from the fact that Ho(A; K) = Ho(linka §; K) = 0,
because 1 + dimg Ho(A; K) coincides with the number of connected compo-
nents of A. Next we conclude that A is pure. Indeed, let F' and G be two
facets of A. Since A is connected, there exist facets FY,..., F,, with F = F}
and G = F,,, and such that F; N F;;1 # 0 for i =1,...,m — 1. Since for each
i, F; and Fj ;1 have a vertex in common, it follows that dim F; = dim F;4; for
all ¢, as we have above. In particular dim F' = dim G, as asserted.

Now, as we know that A is pure, it follows that dim link s F'+14|F| = d for
all F' € A. This implies that i — |F| =1 = (i — d) + dimlinka F' < dimlinka F
for i < d. Thus our hypothesis implies (8.6), and shows that A is Cohen—
Macaulay over K. O

In the course of the proof of Reisner’s theorem we showed
Corollary 8.1.7. Every Cohen—Macaulay simplicial complez is connected.

Corollary 8.1.8. Let A be a Cohen—Macaulay complex and F is a face of A.
Then linka F' is Cohen—Macaulay.

Proof. Let G be a face of linka F'. Then
linkjink , 7 G = linka (F U G).
Hence Reisner’s criterion says that link o F' is Cohen—Macaulay. a
We are now in the position to prove

Theorem 8.1.9 (Eagon—Reiner). Let A be a simplicial complex on [n] and
let K be a field. Then the Stanley—Reisner ideal In C Klx1,...,2,] has a
linear resolution if and only if K[AV] is Cohen—Macaulay.

More precisely, Ia has a q-linear resolution if and only if K[AV] is Cohen—
Macaulay of dimension n — q.

Proof. Let K[AY] be Cohen-Macaulay with dim AY = d — 1. Let F' be a face
of AV with |F| = n — j. Reisner’s theorem says that H;_;(linkav F; K) = 0
unless i — 1 = dimlinkav F'. Since AY is pure, one has dimlinkav F' = d —
(n —j) — 1. Thus by using Corollary 8.1.4 it follows that 3;;(Ia) = 0 unless
j—1i=mn—d. Hence I has a (n — d)-linear resolution.

Conversely, suppose that In has a g-linear resolution. Then every mini-
mal nonface of A is a g-element subset of [n]. Hence AV is pure of dimen-
sion n — q — 1. Let F be a face of AV with |F| = n — j. Again by using
Corollary 8.1.4 it follows that Ir.l'i,l(linkAv F;K) =0 unless j =i+g¢. In
other words, ﬁi(linkAv F;K)=0unless i = j — g — 1. Since dimlinkav F' =
(n—q) —(n—j)—1=j—q—1, the homology group H;(linkav F; K) = 0
vanishes unless ¢ = dim link ov F. Thus Reisner’s theorem guarantees that AV
is Cohen—Macaulay, as desired. a
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We conclude this subsection with the following complement to the Eagon—
Reiner theorem.

Proposition 8.1.10. Let A be a simplicial complex. Then
projdim I = reg K[AY].

Proof. The regularity of a finitely generated graded S-module in terms of local
cohomology is given by

reg(M) = max{j: HL(M);_; # 0 for some i},
see Appendix A.7. Then (8.4) and (8.5) applied to AV imply that

HL(K[A]);.i= Y dimg H;_(linkav F; K),
FeA,|F|=i—j
so that reg(K[AV]) = max{j: H;_;(linkav F; K) # 0 for some F € AV}.
By comparing this with the formula for 8;;(fa) in Corollary 8.1.4, the
assertion follows. O

8.2 Componentwise linear ideals

We first begin with the study of a special class of ideals with linear resolution.

8.2.1 Ideals with linear quotients

In general it is not so easy to find ideals with linear resolution. However, a big
class of such ideals are those with linear quotients. Let I C S be a graded ideal.
We say that I has linear quotients, if there exists a system of homogeneous
generators f1, fa,..., fm of I such that the colon ideal (f1,..., fi—1) : fi is
generated by linear forms for all 4.

Proposition 8.2.1. Suppose I C S is a graded ideal generated in degree d
and that I has linear quotients. Then I has a d-linear resolution.

Proof. Let f1,..., fm be a system of generators of I where each f; is of de-
gree d, and assume that for all k, Ly = (f1,..., fk—1) : fx is generated by
linear forms. We show by induction on k that Iy = (f1,..., fr) has a d-linear
resolution. The assertion is obvious for £ = 1. Suppose now that k£ > 1 and
let ¢1,...,¢, be linear forms generating Lj; minimally. Observe that ¢1,... ¢,
is a regular sequence. Indeed, if we complete ¢4, ..., ¢, to a K-basis ¢1,...,40,
of S;. Then p: S — S with p(z;) = ¢; for i =1,...,n is a K-automorphism.
Since z1, . . ., x, is a regular sequence it follows that ¢; = p(z1),..., 4 = (x;)
is a regular sequence as well.
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Now since ¢4, . .., £, is a regular sequence, the Koszul complex K (¢4, ... ,¢,;
S) provides a minimal graded free resolution of S/Ly; cf. Theorem A.3.4. This
implies that

Tors (S/Li)(~d). K)is; = Tord (S/Li, K)o gy =0 for j #d.

We want to show that Tor;(Iy, K);+; = 0 for all 4 and all j # d. Observe that
I /I;;—1 = (S/Lg)(—d), so that we have the following short exact sequence

0— It—1 — It — (S/Li)(—d) — 0.
This sequence yields the long exact sequence
Tory (Iy—1, K)ivj — Tor} (I, K )iy j — Torf ((S/Ly)(—d), K)iy; (8.7)

By applying our induction hypothesis we see that both ends in this exact
sequence vanish for j # d. Thus this also holds for the middle term, as desired.
O

Analyzing the proof of the previous proposition we see that the Betti num-
bers of I can be computed once we know for each k the number of generators
of Ly = (f1,.-., fk—1) : fx. Let this number be ry.

Corollary 8.2.2. Let I C S be a graded ideal with linear quotients generated
in one degree. Then with the notation introduced one has

n -
s =3 (")
k=1
In particular it follows that projdim(I) = max{ry,ra,...,rn}.
Proof. In the long exact sequence (8.7) for j =d
— Tory 1 ((S/Li)(=d), K) 1)+ (a—1) = Torf (I—1, K)ita — Tor] (I, K)ita
— Tor ((S/Li)(—d), K )iya — Tory y (In—1, K)i—1)4(as+1) —
the end terms vanish, so that we obtain the short exact sequence
0 — Tory (I—1, K)i+qa — Tory (Ix, K)iya — Torf (S/Ly)(~d), K)i+a — 0,

from which we deduce that g;(Ix) = B;({x—1)+ (TZ’“) Induction on k completes
the proof. 0

8.2.2 Monomial ideals with linear quotients and shellable
simplicial complexes

What does it mean that a monomial ideal I does have linear quotients with
respect to a monomial system of generators?
Suppose G(I) = {u1,...,Un}. Then we have
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Lemma 8.2.3. The monomial ideal I has linear quotients with respect to the
monomial generators uy,us, . .., Uy, of I if and only if for all j < i there exists
an integer k < ¢ and an integer ¢ such that

U . Uj
—— =1, and z,y divides ————.
ged (ug, ;) ged(uy, u;)
Proof. The assertion follows immediately from the fact that (u1,...,u;—1) : u;
is generated by the monomials w;/ged(u;,u;), j = 1,...,7 — 1, see Proposi-
tion 1.2.2. O

As an immediate consequence we obtain

Corollary 8.2.4. Let I be a squarefree monomial ideal with G(I) = {u1, ua,
<oy U}, and let F; = supp(u;) for i =1,...,m. Then I has linear quotients
with respect to uy, us, ..., Um if and only if for all i and all j < i there exists
an integer £ € F; \ F; and an integer k < i such that Fy, \ F; = {(}.

We will now relate linear quotients of squarefree monomial ideals to shella-
bility of simplicial complexes.

Let A be a simplicial complex on [n]. We say that A is (nonpure)
shellable if its facets can be ordered Fy, Fs, ..., F}, such that, for all 2 < m,
the subcomplex

(Fr,...,Fj_1) N (Fy)

is pure of dimension dim F;—1. An order of the facets satisfying this conditions
is called a shelling order.

To say that Fy, Fs, ..., F, is a shelling order of A is equivalent to saying
that for all ¢ and all j < ¢, there exists £ € F; \ F; and k < ¢ such that
F; \ F, = {{}. Thus we obtain

Proposition 8.2.5. Let A be a simplicial complex. The following conditions
are equivalent:

(a) Ia has linear quotients with respect to a monomial system of generators;
(b) the Alexander dual AV of A is shellable.

More precisely, if G(In) = {ui,u2, -, un} and F; = supp(u;) for i =
1,...,m, then I has linear quotients with respect to uy,, ..., U if and only if
Py, Fy, -+, F,, is a shelling order of AV, where I is the complement of F is

Proof. It follows from Lemma 1.5.3 that F\,Fy, -, F,, are the facets of A.
Since F,.\ Fs = F,\ F,. for all r and s, all assertions follow from Corollary 8.2.4.
O

The following result gives a useful combinatorial condition for the Cohen—
Macaulay property of simplicial complexes.
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Theorem 8.2.6. A pure shellable simplicial complex is Cohen—Macaulay over
an arbitrary field.

Proof. By Proposition 8.2.5 the simplicial complex A is shellable if Tav is
generated in one degree and has linear quotients with respect to a monomial
system of generators. This property is independent of the characteristic of
the base field. Thus, if A is shellable, then Iov has a linear resolution over
an arbitrary base field, and hence the desired result follows by Eagon—Reiner
(Theorem 8.1.9). O

For later applications we give a different characterization of shellability in
terms of partitions. Let A be a simplical complex and G C F faces of A. The
set

[G,F]={He A: GCHCF}

is called an interval. A disjoint union

m

A= ]G, F]

i=1

of intervals is called a partition of A.

Let Fy,..., Fy, be a shelling of A. This shelling gives rise to the following
partition of A: we let A; = (F1,..., F;), and define the restriction of the
facet F} by

R(Fk) = {Z € Fy: Fy \ {Z} € Akfl}.

Proposition 8.2.7. Let Fy,..., F,, be a shelling of A. Then

A= G[R(Fk)ka]
k=1

s a partition of A.

Proof. Let F' € A, and let k be the smallest integer such that F' C Fj. We
claim that R(F)) C F. Indeed, let i € R(F}) and suppose that ¢ ¢ F'. Since
Fp\ {i} € Ag_q, it follows that F € A;_4, a contradiction. This implies that
A is the union of the intervals [R(Fy), Fy].

Suppose this union is not disjoint. Then there exist integers j < k such
that [R(F;), F;] N [R(Fy), Fi] # 0. This implies that R(Fy) C Fj. In other
words, the elements ¢ € Fj, such that F, \ {i} € Ax_1 belong to F;. Hence
Fy € A1, a contradiction. a

Next we characterize the partitions which arise from shellings:

Proposition 8.2.8. Given an ordering of Fi,...,F,, of the facets of A and
a map R:{F1,...,Fn} — A, the following conditions are equivalent:

(i) F1,..., Fy is a shelling and R 1s its restriction map;
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(i) (@) A = U [R(F%), Fy] is a partition, and
(B) R(F;) C Fj implies i < j for alli,j.

Proof. (i) = (ii) follows from the definition of the restriction map attached
to a shelling. In order to prove the implication (ii) = (i), we show that

Ap_1N <Fk> = <Fk \ {’L} xS R(Fk»,

which then yields (i
The conditions
A1 0 (Fk) = (Fk)

(Fi) \ [R(Fy), Fi] = (Fix \ {i}: i € R(F%)),

)-
a) and (8 ) imply that (Fj) \ Ax—1 = [R(F%), Fi], so that
\ [R(F}), Fg]. Since

the assertion follows. O

In the definition of shellability no statement is made about the dimension
of the facets in the shelling order. However, as we shall see, the facets in a
shelling can always be arranged such that they appear in order of decreasing
dimension.

Proposition 8.2.9. Let Fi,...,F,, be a shelling of the (d — 1)-dimension
stmplicial complex A with restriction map R. Let F;, , F;,,---, F;  be the re-
arrangement obtained by taking first all facets of dimension d—1 in the induced
order, then all facets of dimension d — 2 in the induced order, and continuing
this way in order of decreasing dimension. Then this rearrangement is also a
shelling, and its restriction map R’ is the same, that is, R'(F) = R(F) for

all facets F.
Proof. By using Proposition 8.2.8 it suffices to show that
R(F;;) C Fi, implies j < k.

Suppose this condition is not satisfied. Then there exist integers r and s such
that

r<s, |F.|<|Fs], and R(F,)C Fs. (8.8)

We choose r and s in (8.8) with s minimal. Observe that R(F) # Fy, because
otherwise we would have that F,. C Fy, a contradiction. Then there exists
i € F, such that R(F,) C F,\{i}. The shelling property of Fy, ..., F,, implies
that there exists ¢t < s such that Fy \ {i} C F;. It follows that R( r) C Fy,
so that |F;| > |Fs|. Moreover, Proposition 8.2.8 implies that r < ¢. This
contradicts the choice of s. ad
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8.2.3 Componentwise linear ideals

Let I be a graded ideal of S = K|z1,...,2,] and m = (z1,...,2,) the graded
maximal ideal of S. If I is a graded ideal of S, then we write I(;y for the ideal
generated by all homogeneous polynomials of degree j belonging to I. More-
over, we write I<j, for the ideal generated by all homogeneous polynomials of
I whose degree is less than or equal to k.

We say that a graded ideal I C S is componentwise linear if I ;) has
a linear resolution for all j. Typical examples of componentwise linear ideals
are stable monomial ideals.

Ideals with linear resolution are componentwise linear, as follows from

Lemma 8.2.10. If I C S is a graded ideal with linear resolution, then mI has
again a linear resolution.

Proof. Say that I is generated in degree d. Then the least shift in the ith
position of the graded minimal free resolution of mI is at least i + d + 1. This
implies that Tory (K, I);y; = 0 for all i > 0 and j < d + 1. Consider the long
exact Tor sequence arising from the short exact sequence 0 — ml — [ —
I/mI — 0. Since I/mI = K(—)® for some b, we obtain the exact sequence

Tor}, 1 (K, K(—d)")is1)4(j—1) — Torf (K,mI);; — Tors (K, 1)t

For j > d+1, we have ToriS(K7 I)iy; =0and Torf+1(K, K(—d)b)(Hl)Jr(j,l) =
0, since I and K (—d) have d-linear resolutions. It follows that Tor? (K, mI);y; =
0 for all > 0 and j > d + 1. Thus mI has (d + 1)-linear resolution. O

Another interesting class of componentwise linear ideals are the ideals with
linear quotients, as we shall see later in this section.

In the analysis of componentwise linear ideals, we begin with a simple fact
which says that the part I<; of I determines already a certain range of its
graded Betti numbers. We first observe

Lemma 8.2.11. Let I C be a componentwise linear ideal. Then I<; is com-
ponentwise linear for all j.

Proof. Let k < j, then (I<j)(xy = Im). Therefore (I<;)() has a linear res-
olution for k& < j. Let k > j, then (I<;)) = m(/<;)x—1). Thus, by using
Lemma 8.2.10 and induction on k — j it follows that (I<;)) has a linear
resolution for k£ > j, as well. Hence I<; is componentwise linear. a

Lemma 8.2.12. Let I C S be a graded ideal. Then, for all k and for all j < k,
one has

Bii+i(I) = Biivi(I<k)-
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Proof. Let H;(x;I) denote the Koszul homology of I with respect to the
sequence X = x1,Z2,...,T, Of the variables. By using an isomorphism of
graded K-vector space Tor? (K, I) = H;(x;I) (see Corollary A.3.5), it follows
that
Biivs(I) = dimp Hy(%;1)iy ;.

A homogeneous cycle ¢ of degree i + j representing a homology class in
H;(x;1I);4; is a linear combination ) . arep of the canonical basis elements
er = ep, N+ Aey, with coefficients ar € I;. Thus c also represents a cycle
in H;(x;I<k)i+; provided j < k. Similarly, the i-boundaries of the Koszul
complex for I and for I<j, coincides whenever j < k. Hence

Hi(x; )iy = Hi(%; I<k)ivg
for j < k. This proves the assertion. O

By using Lemma 8.2.12 we show that the graded Betti numbers of a com-
ponentwise linear ideal can be determined by the graded Betti numbers of its
components.

Proposition 8.2.13. Suppose that the graded ideal I C S is componentwise
linear. Then

Bisirs(I) = Billi)) — Bi(mlj_1y)
for all j.

Proof. Let t denote the highest degree of generators of a minimal set of gener-

ators of I. Our proof will be done by induction on ¢. Let ¢ = 1. Then I is gen-

erated by linear form, and hence has a linear resolution. Since I(;, = mI;_1)

if j > 1 and since §; ;4;(I) = 0if j > 1, the assertion is true for j > 1. On the

other hand, since I = I;;y and m/5, = 0, the assertion is obvious for j = 1.
Now, suppose that ¢ > 1 and consider the exact sequence

0— Igt,1 — I — I<t>/mI<t_1> —0
which for each j yields the long exact sequence
TOI‘l'(K, Igt—l)i+j — TOI‘l'(K, I)i_._j — TOI‘l'(K, I<t>/mI<t_1>)¢+j. (89)

Since I<;—1 is generated in degree < ¢—1, one has (I<¢—1) ¢y = m(I<¢—1)(j—1)
for j > t. Since I<;_1 is componentwise linear (Lemma 8.2.11), our induction
hypothesis guarantees that ; ;1;(I<¢—1) = 0 for j > t. Hence by the long
exact sequence (8.9) one has

TOI‘l'(K, I)i+j = TOI‘i(K, I<t>/mI<t_1>)i+j (810)

for j > t.

Now, we show our formula for §;;4;(I). By Lemma 8.2.12 one has
Bi,i+;(I) = Biit;j(I<¢—1) for j < t — 1. Thus by induction hypothesis our
formula is true for j <¢ — 1. Let j > ¢ and consider the exact sequence
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0 — mlg—ry — Ly — Ly /mi—1y) — 0
which for each j yields the long exact sequence

TOI‘H_l(K, I<t>/ml<t,1>)i+j — TOI‘Z' (K, mI<t,1>)i+j —_— TOI‘Z‘ (K, I(t))i+j
— Tori(K, I<t>/ml<t,1>)i+j — Tori,l(K, mI<t,1>)i+j.

Since I;_1y has a (t —1)-linear resolution, it follows that ml;_1 has a t-linear
resolution (Lemma 8.2.10). Hence Tor; 1 (K, mI;_q))i4; = 0 for j > ¢. On the
other hand, since the graded module Iy /mI;_1y is generated in degree t, it
follows that Tor;y 1 (K, Iy /mIy_1y)iy; = 0 for j = t. Thus by using (8.10)
our formula is true for j = ¢. Finally, let j > t. Then Tor;(K, Iy)i1; = 0
and Tor; 1 (K, mI_1)it; = 0. Thus Tor;(K, Iy /mI;_qy)iy; = 0. In view of
(8.10) one has 3; ;1 ;(I) = 0. Since mI;_qy = I;y, our formula is true. O

As an immediate consequence of the preceding result we obtain

Corollary 8.2.14. Let I C S be a componentwise linear ideal. Then the reg-
ularity of I is equal to the highest degree of a generator in a minimal set of
generators of I.

8.2.4 Ideals with linear quotients and componentwise linear ideals

As an extension of Proposition 8.2.1 we have

Theorem 8.2.15. Let I C S be a graded ideal which has linear quotients
with respect to a minimal homogeneous system of generators of I. Then I is
componentwise linear.

Proof. Let f1,..., fmn be a minimal homogeneous system of generators of I
such that (f1,..., fi—1): fi is generated by linear forms for i = 1,...,m. Pro-
ceeding by induction on m, we may assume that J = (f1,..., f;m—1) is com-

ponentwise linear.

Now we show the following: let J = (f1,..., fim—1) be any graded ideal
which is componentwise linear, and let f € S be a homogeneous element of
degree d such that J: f is generated by linear forms. Assume further that
fi,--+, fm—1,f is a minimal system of generators of I = (f1,..., fm—1,f)-
Then [ is componentwise linear.

In order to prove this statement we proceed by induction on

s(J, f) = max{0,p — d},

where p is the maximal degree of the f;. Suppose s(J, f) = 0. Then d > p.
Observe that Iy = Jy; for j < d, and so I}, has a linear resolution for j < d.
Next observe that Jig: f = J : f. Obviously, Jiqy: f C J : f. Conversely, let
J:f = L, where L = ({1,...,£.). Then for each i we have ¢;f € J. Since
I is minimally generated by fi,..., fin—1, f, it follows that ¢;f is a linear
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combination of f1,... f,,—1, whose nonzero coefficients are of positive degree.
Since degl; f = d + 1, only those f; with degree < d can occur in this linear
combination. Thus we see that ¢;f € J<4. Since (Jig))ay1 = (J<da)at1, it
follows that ¢; f € J(4y, and hence £; € Jgy.

The above considerations show that Jgy: f is generated by linear forms.
Since Jigy + (f) = I(q), the arguments in the proof of Proposition 8.2.1 show
that I,4) has a linear resolution. If follows from Lemma 8.2.10 that (4, ;) has
a linear resolution for all 7 > 0, and hence I is componentwise linear.

Now we assume that s(J, f) > 0. We complete the system of generators
ly,...,¢. of L by the linear forms ¢,1,...,¢, to obtain a minimal set of
generators of the graded maximal ideal m = (x1,...,2,) of S, and set g; = ¢; f
for i =r+1,...,n. Since (J + (gr41,--->9n))(d+j) = La+j) for all > 1, and
since I(; is componentwise linear for j < d (independent of s), as we have

seen before, it suffices to show that (J + (¢r41,...,9x)); is componentwise
linear. In order to prove this we show: For allt=1,...,n — 7,
(1) the elements fi,..., fm—1,9r+1,-- -, gr+; form a minimal set of generators

of IJ = (.f17 ERE) fm—hg’f‘-‘rla B agT-‘rj);
(2) J+ (gr+1s---3Gr+j—1) : gr4+j is generated by linear forms.

Suppose (1) and (2) are correct. Since deggs = d + 1, it follows that
s(J, gr+1) < s(J, f) — 1. Hence our induction hypothesis implies that I is
componentwise linear. Since s(I1, gr4+2) = 0, our induction hypothesis implies
again that I is componentwise linear. Proceeding in this way, we see that
J 4 (gr+1,-- -, gn) is componentwise linear.

Proof of (1): Suppose we can omit some f;. Then f; can be expressed by
the remaining f; and the g; which are all multiples of f. This implies that
fiyeooy fi, .oy fm—1, f is a minimal set of generators of I: a contradiction.

On the other hand, if we can omit g,4;, then g,4; = g + Z?:_f hiGr4;

with hj € S and g € J. It follows that (£,4; — ZCL f hileii)f € J, and hence

lrgi — Y550 hjleyj € L: a contradiction.
A

Proof of (2): Let h € J + (gr41,---+9r+j—1) : gr+j. Then l,4,;fh €
J 4+ (grs1,--- ,grﬂ 1). Therefore there exists g € J and h; € S such that
bryifh = g+ 377 hil,yif. This implies that €4 jh — 3"  hil,i € J: f =
(l1,...,0,),and hence lryjh € (bq,..., 04 -1). Since the sequence {1, ..., 0y ;
is a regular sequence, we conclude that h € (¢1,...,44;_1), as desired. a

Ezample 8.2.16. In Theorem 8.2.15 the condition that I has linear quotients
with respect to a minimal system of homogeneous generators cannot be omit-
ted. Indeed, let I = (22,%%). Then I is not componentwise linear, but I has
linear quotients with respect the nonminimal system of generators x2, xy2, 3/
of I.
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8.2.5 Squarefree componentwise linear ideals

Let I C S be a squarefree monomial ideal. Then, for each degree j, we write
I;) for the ideal generated by the squarefree monomials of degree j belonging
to I. We say that I is squarefree componentwise linear if I;; has a linear
resolution for all j.

Proposition 8.2.17. A squarefree monomial ideal I C S is componentwise
linear if and only if I is squarefree componentwise linear.

Proof. Suppose that I is componentwise linear. Fix j > 0. Then [; has a
linear resolution. The exact sequence

0 — Iy — Lyjy — Ly /[y — 0
gives rise to the long exact sequence
— TOI‘H_l(K, I<]>/I[7]) NN TOI‘Z'(K, I[]]) I TOI'Z‘(K, I{])) -

Since the ideals under consideration are monomial ideals, it follows that all the
Tor-groups in the long exact sequence are multigraded K-vector spaces. Now,
Hochster’s formula (Theorem 8.1.1) says that Tor;(K, I[;) has only squarefree
components; in other words, Tor;(K, I[;1)q = 0 if one entry of the vector a is
> 1. On the other hand, since all generators of I(;/I}; have non-squarefree
degrees, it follows that Tor;(K, I;y/I;)) has only non-squarefree components.
Since «; is multihomogeneous, a; must be the zero map. Thus for each ¢ the
map Tor; (K, Ij;1) — Tor;(K, I ;) is injective. Since I;y has a linear resolution,
the graded K-vector space Tor;(K, I ;y) is concentrated in degree i + j. Thus
Tor; (K, I};)) is concentrated in degree i + j. Hence I};) has a linear resolution,
as required.

Conversely, suppose that I|; has a linear resolution for all j. We will show
by using induction on j that I; has a linear resolution for all j.

Let t denote the lowest degree for which Iy # 0. Since I(;y = Ify), 14y has
a linear resolution. Suppose that I(;, has a linear resolution for some j > t.
Then mI;, also has a linear resolution. The first part of the proof shows that
the squarefree part L of m/; has a linear resolution. Since L is contained in
Ijj44), we get the exact sequence

0—L— mI<j> SY I[j+1] — I<j+1> — 0, (8.11)

where u € L is mapped to (u,—u) € mly @ Ij11). We have already noted
that both L and mI;, have a linear resolution. Furthermore, I};, ) has a linear
resolution.

From the long exact Tor sequence which is derived from (8.11) we deduce
that I;;41y has a linear resolution once it is shown that

Tor;(K, L) — Tor;(K,ml ;) © Tor;(K, I[j+1])

is injective for all 7. But this is clear since already the first component of this
map is injective as we have seen in the first part of the proof, because L is
the squarefree part of mI;y. O
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8.2.6 Sequentially Cohen—Macaulay complexes

We now turn to the discussion of the combinatorics on squarefree componen-
twise linear ideals.

Let A be a simplicial complex on [n] of dimension d — 1. Recall that, for
each 0 < i < d — 1, the ith skeleton of A is the simplicial complex A
on [n] whose faces are those faces F' of A with |F| < i+ 1. In addition, for
each 0 < i < d — 1, we define the pure ith skeleton of A to be the pure
subcomplex A(i) of A whose facets are those faces F' of A with |F| =14+ 1.

We say that a simplicial complex A is sequentially Cohen—Macaulay
if A(i) is Cohen—Macaulay for all 4.

Theorem 8.2.18 (Bjorner—Wachs). Let A be a shellable simplicial com-
plex. Then all skeletons and pure skeletons of A are shellable.

Proof. Let dim A = d—1, and let 0 < s < d—1 be an integer. We want to show
that A®) and A(s) are shellable. Applying Proposition 8.2.9 the shellability
of A®) guarantees the shellability of A(s). Thus it suffices to show that A(*)
is shellable. By Proposition 8.2.9 we may assume that the shelling Fy, ..., F,,
has the property that |F;| < |F}| for all i > j. Let k be the largest integer for
which |Fg| > s+ 1. The subcomplex of A generated by the facets Fi,..., Fj
is again shellable and has the same sth skeleton. Thus we may assume as
well that |F;| > s+ 1 for all i. Since A®) = (AG+)O) 4 simple induction
argument shows that we may assume that s = d — 2.
Let

A= 0 R, F}] (8.12)

be the partition of A induced by the shelling, see Proposition 8.2.7.
Let Fi,...,F; be the facets of dimension d — 1. For each j, 1 < j < /,
choose an ordering i1, ... ,iq; of the elements of F; \ R;, and let

Rj,k:RjU{il,...,Z’k_l}, and Fj,k:Fj\{ik} for k=1,...,q;

Then we obtain for each j the partition
qj
[R;, Fy) = [y, F5] U | [Rjks Fi)
k=1

of the interval [R;, F}], and hence the partition

¢ q
Ald-2) _ U U e FielU (R, Fy). (8.13)

j=t+1

Since the partition (8.12) of A is induced by a shelling, it satisfies condition
(B) of Proposition 8.2.8. From this it is easy to see that the partition (8.13)
of Ald=2) gatisfies condition (8) of Proposition 8.2.8 as well, and hence is
induced by a shelling of A(@=2), 0
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Corollary 8.2.19. Any shellable simplicial complex is sequentially Cohen—
Macaulay.

We now come to one of the main results of this section, which is a gener-
alization of the Eagon—Reiner theorem.

Theorem 8.2.20. Let A be a simplicial complex on [n]. Then In C S is
componentwise linear if and only if AV is sequentially Cohen—Macaulay.

Proof. Let I = IA. Then by Proposition 8.2.17 I is componentwise linear if
and only if I is squarefree componentwise linear. Let A; denote the simplicial
complex on [n] with I, = Ij;). Let F' C [n]. Then F' ¢ A; if and only if there
is a subset G C [n] such that G C F, |G| = j and G ¢ A. In other words,
[n]\F € (4;)" if and only if there is a subset G C [n] such that [n]\F C [n]\G,
[[n]\ G| =n—jand [n]\ G € AV. Hence (A;)Y = AY(n — j — 1). By virtue
of Theorem 8.1.9 it follows that I}; has a linear resolution if and only if
AV(n — j — 1) is Cohen—Macaulay. Hence T4 is componentwise linear if and
only if AY (i) is Cohen-Macaulay for all 1. O

As a consequence of the above results one obtains an alternative and simple
proof of Theorem 8.2.15 in the case of squarefree monomial ideals.

Corollary 8.2.21. Let I be a squarefree monomial ideal with linear quotients.
Then I is componentwise linear.

Proof. Let A be the simplicial complex with I = I 4. Proposition 8.2.5 says
AV is nonpure shellable, and hence by Corollary 8.2.19 AY is sequentially
Cohen—Macaulay. Thus the assertion follows from Theorem 8.2.20. O

8.2.7 Ideals with stable Betti numbers

We now prove a fundamental result on componentwise linear ideals. Let <je
denote the reverse lexicographic monomial order on S induced by the ordering
x1 > -+ > x, of the variables.

Theorem 8.2.22. Suppose that the base field K is of characteristic 0. Then
a graded ideal I C S is componentwise linear if and only if B;iy,;(I) =

Biivj(ging, (I)) for alli and j.

In order to prove Theorem 8.2.22, the following result concerning the ho-
mological data of generic initial ideals will be required.

Theorem 8.2.23. Let I be a graded ideal generated in degree d. Then

(a) If Biivj(gin(l)) # 0, then By iy;(gin(I)) # 0 for all i’ < i;
(b) If Bo j(gin(1)) # 0, then Bo j (gin(I)) # 0 for all d < j' < j.
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Proof. Statement (a) follows from the Eliahou—Kervaire formula in Corol-
lary 4.2.6, since by Proposition 7.2.3 the generic initial ideal is strongly stable.

Let g1,...,9m € I be the generators of I. Suppose that 5y ;1 (gin(l)) = 0.
Then consider the ideal I>;_». Since gin(/>;_2) = gin(I)>;_2, we may assume
that Bo,4+1(gin(I)) = 0 and have to show that gin(I) is generated in degree d.

Since (in(g1),...,in(gm)) is a strongly stable ideal with all generators of
degree d, it follows from Theorem 7.2.2 that (in(gi),...,in(gm)) has a linear
resolution. In particular, the first syzygy module of this ideal is generated in
degree d+ 1. Now since (g 4+1(gin(I)) = 0 it follows that all S-polynomials of
degree d + 1 reduce to 0 with respect to {gi, ..., gm}- Thus Proposition 2.3.5
implies that {g1,...,gm} is a Grobner basis of I, equivalently, gin(I) is gen-
erated in degree d. O

Before starting our proof of Theorem 8.2.22, we state the following:

Lemma 8.2.24. Let I and J be graded ideals of S generated in degree d with
the same graded Betti numbers. Then I>qi1 and J>q41 have the same graded
Betti numbers.

Proof. The exact sequence

0 —— Tsgp1 I K(—d)foa — 0

induces the long exact sequence

Bo,
— Toriy1(I>a+1) i+1)+G-1) = Toripr (D 1)+ G—1) = Tories (K) 7% - ae

Bo,d

i+j—d—>”.

— Tori(I>at1)it; — Tori(I)i4; — Tor;(K)

It then follows that 3; i4;(I>d4+1) = Bi,i+; (1) for all ¢ and for all j # d,d + 1.
Also, B i+j(I>q+1) = 0if j < d. Now, if j = d + 1, then the above long exact
sequence becomes

— Torip1({)it14a — TOI"i+1(K)fi’f — Tor;(I>a+1)i+d+1 — Tori(I)ita+1 — 0.

Hence, Biivay1(I>av1) = Biivari () + (1) Bo.a(I) = Bivriv1va(l).
The same formulas are valid for 3; ;4;(J). This completes the proof. O

We are now in the position to give a proof of Theorem 8.2.22.

Proof (Proof of 8.2.22). First, suppose that I is componentwise linear. By
Proposition 8.2.13 we have

Biii(I) = Bi(L(jy) — Bi(ml(j_1y)

where m is the irrelevant maximal ideal (z1,...,2,) of S. Since a strongly
stable ideal is componentwise linear and since gin(I) is strongly stable, the



8.2 Componentwise linear ideals 147

same formula is valid for gin(7). Therefore, it suffices to prove that 3;(1;y) =
Bi(gin(I) ;) and Bi(ml(;_1y) = Bi(mgin(l)(-1y).

Since Iy has a linear resolution, it follows from Corollary 4.3.18 that
gin(I(;y) has a linear resolution, so that gin(I;,) = gin(I);y. Since I;; and
gin(I(;y) have the same Hilbert function, and since the Betti numbers of a
module with linear resolution are determined by its Hilbert function, the first
equality follows. To prove the second one, we note that mI;_;y has again
a linear resolution and that, by the same reason as before, mgin(l);_1) =
gln(mf<j_1>)

Second, suppose that I and gin(/) have the same graded Betti numbers.
Let max(I) (resp. min(J)) denote the maximal (resp. minimal) degree of a
homogeneous generator of I. To show that I is componentwise linear, we
work with induction on r = max(I) — min(I). Set d = min(I).

Let » = 0. Since I and gin(I) have the same graded Betti numbers, it
follows that gin([) is generated in degree d. Since gin(I) is a strongly stable
ideal, we have that gin(7) has a linear resolution, and hence by Theorem 3.3.4
I has a linear resolution.

Now, suppose that » > 0. Since gin(I>q4+1) = gin(l)>q4+1, our induction
hypothesis and Lemma 8.2.24 imply that I>411 is componentwise linear. Thus,
it suffices to prove that I,4, has a linear resolution. Suppose this is not the
case. Then, by Corollary 4.3.18, gin(I(4) has regularity > d. Moreover, since
gin(I(q)) is strongly stable, its regularity equals max(gin(/g)). It follows from
Theorem 8.2.23 that gin(/4)) has a generator of degree d 4 1. Now,

50,d+1(-[) = dim Id+1 - dim(m]<d))d+1
= dim Iy, — dim(Zgy)as1,

and
Bo,a+1(gin(l)) = dimgin(l)g41 — dim(mgin(I) (a))a+1

= dimgin(I)q41 — dim(mgin(l(a)))as1
> dim gin(I) g41 — dim gin(Z(gy)q1,

because (mgin(I(qy))q4+1 is properly contained in gin(I(gy)a+1. Hence
Bo,a+1(gin(l)) > Bo,at+1(1);

a contradiction. This completes our proof. a

Problems

8.1. By using Hochster’s formula 8.1.1 compute the graded Betti numbers of
the Stanley—Reisner ideal of the simplicial complex of Figure 1.1.

8.2. Let A be a simplicial complex and K a field. Show that A is connected
if and only if Hy(A; K) = 0.
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8.3. Show that Proposition 8.1.10 implies Theorem 8.1.9.

8.4. Let I be a stable or squarefree stable ideal Then I is componentwise
linear.

8.5. Find a componentwise linear monomial ideal I which is not stable.

8.6. Let I be a componentwise linear ideal. Then show that reg(I) =
max{i: 8o, (1) # 0}.

8.7. Let I,, 4 be the ideal in S = KJz1,...,2,] generated by all squarefree
monomials of degree d. This ideal is called squarefree Veronese of type
(n,d).

(a) Show that I, 4 has linear quotients.

(b) Let A be the simplicial complex on the vertex set [n] with In = I 4.
Show that A is the (d — 2)th skeleton of the (n — 1)-simplex.

(c) Use Alexander duality to show that all skeletons of the (n — 1)-simplex
are shellable.

8.8. Let I C S be a graded ideal which has linear quotients with respect to
a homogeneous system of generators f1,..., f,, of I with deg f; < deg fo <

. < deg .
(a) Prove the following generalization of Corollary 8.2.2:

Biivi(I) = Z (Tik),
k=1
deg fr,=Jj
where 7 is the number of generators (f1,..., fk—1) : fx
(b) Let I be a (squarefree) stable ideal with G(I) = {uy,...,un} such that
for ¢ < j either degu; < degu;, or degu; = degu; and u; <iex u;. Show that
I has linear quotients with respect to uy, ..., Up,.
(c) Use (a) and (b) to give a new proof of Corollary 7.2.3(a) and Corol-
lary 7.4.2.

8.9. For a monomial u let min(u) be the smallest number ¢ such that z; di-
vides u, and m(u) = max(u) the maximal such number.

Let I C S be a stable monomial ideal.

(a) Prove that height(I) = max{min(u): v € G(I)} and projdim(S/I) =
max{max(u): u € G(I)}.

(b) Show that the following conditions are equivalent: (i) S/I is Cohen-
Macaulay; (ii) I has no embedded prime ideal; (iii) | Ass(S/I)| = 1.

8.10. Let I C S be a squarefree stable monomial ideal.

(a) Let A be the simplicial complex with o = I. Show that Iav is again
squarefree stable.

(b) Prove: S/I is Cohen—-Macaulay if and only if all minimal prime ideals of
I have the same height.
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8.11. Let A be the simplex on [n]. We know from Theorem 8.2.18 that the
ith skeleton is shellable. Give an explicit shelling of the ith skeleton.

Notes

The technique of Alexander duality was first applied in [TH96] to show that
the first graded Betti numbers of a Stanley—Reisner ideal are independent of
the characteristic of the base field. A far-reaching application of Alexander
duality is given by the Eagon—Reiner theorem [ER98|, which provides a pow-
erful tool in the study of Cohen—Macaulay simplicial complexes. Hochster’s
theorem [Hoc77] to compute the graded Betti numbers as well as Reisner’s
Cohen—Macaulay criterion [Rei76] play essential roles in the proof of this the-
orem. A generalization of the Eagon—Reiner theorem, relating the projective
dimension of a Stanley—Reisner ideal to the regularity of the Stanley—Reisner
ring of the Alexander dual, is due to Terai. Further generalizations by Bayer,
Charalambous and S. Popescu [BCP99] concern the extremal (multigraded)
Betti numbers of a simplicial complex and its dual. Easier to prove, but also
useful, is the fact that a simplicial complex is shellable if and only if the
Stanley—Reisner ideal of its Alexander dual is generated in one degree and has
linear quotients. Ideals with linear quotients were first considered in [HT02].
Alexander duality for arbitrary monomial ideals and duality functors intro-
duced by Miller [Mil00al, [Mil98], [Mil00b], as well as Alexander duality for
squarefree modules introduced by Rémer [Roe01] and Yanagawa [Yan00], has
many more interesting applications.

Our presentation of shellability and some of its fundamental properties fol-
lows the article by Bjorner and Wachs [BW97]. The fact that pure shellability
implies Cohen—Macaulayness was discovered by [Gar80] and [KK79]. Com-
ponentwise linear ideals were introduced in [HH99] to generalize the Eagon—
Reiner theorem in a different direction. It turned out that the property of being
componentwise linear corresponds to being sequentially Cohen—Macaulay via
Alexander duality; see [HRW99]. The concept of sequentially Cohen—Macaulay
simplicial complexes was introduced by Stanley [Sta95]. Componentwise linear
ideals are distinguished by the remarkable property, observed in [AHHOOD],
that in characteristic 0, the graded Betti numbers of such an ideal and that
of its generic initial ideal coincide. The proof Theorem 8.2.15 is taken from
[SV08].
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9

Alexander duality and finite graphs

Alexander duality in combinatorics is studied. We demonstrate how Alexander
duality is effective to develop the algebraic combinatorics related with finite
partially ordered sets and finite graphs. Topics discussed include classification
of Cohen—Macaulay bipartite graphs and Cohen—Macaulay chordal graphs
together with algebraic aspects of Dirac’s classical theorem on chordal graphs.

9.1 Edge ideals of finite graphs

We introduce edge ideals of finite graphs and study the algebraic properties
of edge ideals of bipartite graphs. Certain monomial ideals arising from finite
partially ordered sets and Alexander duality will play an important role for
the classification of Cohen-Macaulay bipartite graphs.

9.1.1 Basic definitions

Let G be a finite simple graph on the vertex set V(G) with edge set E(G).
In other words, |V(G)| < oo and E(G) C V(G) x V(G) \ {{v,v}: v € V(G)}.

All graphs considered in this book are finite simple graphs, which hence-
forth will simply be called graphs.

Without loss of generality we may assume that V(G) = [n], where [n] =
{1,2,...,n}.

Given a subset W of [n] we define the induced subgraph of G on W
to be the subgraph Gy on W consisting of those edges {i,j} € E(G) with
{i,j} C W. A complete graph on [n] is the finite graph G on [n] for which
{i,j} € E(Q) for all i € [n] and j € [n] with ¢ # j. The complementary
graph of a finite graph G on [n] is the finite graph G on [n] whose edge set
E(G) consists of those 2-element subsets {i, j} of [n] for which {i,j} & E(G).

A finite graph can be viewed as 1-dimensional simplicial complex.

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 153
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A walk of G of length ¢ between i and j, where ¢ and j are vertices of
G, is a sequence of edges of the form {{ig, i1}, {i1,42},...,{ig—1,4q}}, where
i0,%1,. .. ,1q are vertices of G with ig = ¢ and i, = j.

A cycle of G of length ¢ is a subgraph C of G such that

E(C) = {{i1,i2}, {i2 i3}, - -, {ig—1,0q}, {ig 1} }s

where i1, 19, ...,144 are vertices of G' and where i; # iy, if j # k.

A graph G on [n] is connected if, for any two vertices ¢ and j of G, there
is a walk between ¢ and j.

A forest is a finite graph with no cycle. A tree is a forest which is con-
nected.

A graph G on [n] is called bipartite if there is a decomposition [n] =
V1 UV, such that every edge of G is of the form {i,j} with i € V; and j € V.

Bipartite graphs can be characterized as follows:

Lemma 9.1.1. A finite graph G is bipartite if and only if every cycle of G is
of even length. In particular every forest is bipartite.

Proof. First, suppose that G is a bipartite graph with the decomposition UUV
of its vertices. Let C' = {{v1, v}, {ve,v3}, ..., {vg—1,v4},{vg,v1}} be a cycle
of length ¢ of G with v; € U. Then vy € V and v3 € U. In general, one has
v; € U if i is odd and v; € V if ¢ is even. Since v, € V, it follows that ¢ is
even.

In order to prove the converse, we may assume that G is connected. Sup-
pose that every cycle of G is of even length. Let u and v be vertices of G. Let
W be a walk of G of length ¢ between v and v and W’ a walk of G of length
q' between u and v. Since every cycle of G is of even length, it follows easily
that ¢ + ¢’ is even. In other words, either (i) both ¢ and ¢’ are even or (ii)
both ¢ and ¢’ are odd.

Now, fix a vertex vy of G. Let U (resp. V) denote the vertices w of G
such that there is a walk of even (resp. odd) length between vy and w. Then
UNV = with vg € U. Let w,w’ € U with w # w’ and with {w,w’} € E(G).
Since w € U, there is a walk of even length between vy and w. It follows
that there is a walk of odd length between vy and w’, a contradiction. Thus
{w,w'} ¢ E(G) for w,w' € U with w # w'. Similarly, {w,w'} ¢ E(G) for
w,w" € V with w # w'. Hence every edge of G is of the form {u,v} with
u € U and v € V. Thus G is bipartite, as desired. O

The following well-known theorem on classical graph theory is indispens-
able for the classification of Cohen—Macaulay bipartite graphs.

Lemma 9.1.2 (The Marriage Theorem). Let G be a bipartite graph on
the vertex set W U W' with |W| = |W'|. For each U C W we write N(U) for
the set of those j € W' such that {i,j} € E(G) for some i € U. Suppose that
IN(U)| > |U| for all subset U C W. Then there is a bijection f : W — W’
such that {3, f(i)} is an edge of G for alli e W.
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Proof. First, suppose that |[N(U)| > |U| + 1 for all nonempty proper subsets
U C W. Fix an arbitrary edge {a,b} of G with a € W and b € W. Since
IN(U) \ {b}| > |U| for all subsets U C W \ {a}, the induction hypothesis
guarantees the existence of a bijection fo : W\ {a} — W'\ {b} such that
{i, fo(i)} is an edge of G for all i € W \ {a}. Now, let fo(a) = b. Then
fo: W — W’ is a bijection such that {3, fo(¢)} is an edge of G for all i € W.

Second, suppose that there is a nonempty proper subset Uy C W with
Uo| = IN(Up)|. ItV C Uy, then N(V) € N(Up) and |[N(V)| > |V]| for all
subset V' C Up. Thus there is a bijection fo : Uy — N(Up) such that {7, fo()}
is an edge of G for all i € Uj.

Let V' be a subset of W\Uy. We claim |[N(V")\N(Up)| > |V'|. In fact, since
IN(V'UUy)| > |V'| +|Up| and since N (V' UUy) = (N(V')\ N(Up)) U N(Uy),
it follows that

IN(VONN@o)l = [V'| + |Uo| = IN(To)| = [V].

Hence there is a bijection f1 : W\ Uy — W'\ N(Uy) such that {7, f1(i)} is an
edge of G for all : € W\ U.
Now, gluing foy and f; yields a desired bijection f: W — W', a

A chord of a cycle C is an edge {i,7} of G such that ¢ and j are vertices
of C with {i,j} ¢ E(C). A chordal graph is a finite graph each of whose
cycles of length > 3 has a chord. Every induced subgraph of a chordal graph
is again chordal.

A subset C of [n] is called a clique of G if for all ¢ and j belonging to C'
with ¢ # j one has {i,j} € E(G). The clique complex of a finite graph G
on [n] is the simplicial complex A(G) on [n] whose faces are the cliques of G.

A simplicial complex A on [n] is called flag if every minimal nonface of A
is a 2-elements subset of [n].

Lemma 9.1.3. A simplicial complex A is flag if and only if A is the clique
complex of a finite graph.

Proof. Let G be a finite graph on [n] and A(G) its clique complex. A subset
F C [n] is a nonface of A(G) if and only if F' is not a clique of G. Thus if F' is
a nonface of A(G), then there are i and j belonging to F' with {7, j} € E(G).
Since {i,7} is a nonface of A(G) which is contained in F, it follows that
every minimal nonface of A is a 2-element subset of [n]. Thus A(G) is a flag
complex.

Conversely, suppose that A is a flag complex and that G is the 1-skeleton
of A. Let A(G) be the clique complex of G. In general, one has A C A(G).
Let F be a clique of G. Since every 2-element subset of F' is an edge of G,
it follows that every 2-element subset of F' belongs to A. Since A is a flag
complex, one has F € A. Thus A(G) C A. Hence A = A(G), as desired. O

Let, as usual, S = K[z, ..., 2,] be the polynomial ring in n variables over
a field K. We associate each edge e = {i, j} of G with the monomial u, = z;z;
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of S. The edge ideal of G is the monomial ideal I(G) of S which is generated
by all quadratic monomials u, with e € E(G).

It follows that the edge ideal of G coincides with the Stanley—Reisner ideal
of the clique complex of the complementary graph of G, i.e. I(G) = IA@).

Let K be a field. We say a graph G is (sequentially) Cohen—Macaulay
or Gorenstein over K if S/I(G) has this property, and we say that G is
shellable or vertex decomposable if A(G) has this property. In general
these properties do depend on K. If this is not the case, then we call G
simply (sequentially) Cohen—-Macaulay or Gorenstein, without referring to K.
Finally we say that G is of type k if S/I(G) is Cohen—Macaulay of type k, cf.
Appendix A.6.

A vertex cover of a graph G on [n] is a subset C' C [n] such that {i,j} N
C # 0 for all {i,j} € E(G). A vertex cover C is called minimal if C is a
vertex of GG, and no proper subset of C is a vertex cover of G. We denote by
M(G) the set of minimal vertex covers of G.

An independent set of G is a set S C [n] such that {i,j} & E(G) for
all 4,5 € S. Obviously, S is an independent set of G if and only if [n] \ S is
a vertex cover of (G. Thus the maximal independent sets of G correspond to
the minimal vertex covers of G.

Lemma 9.1.4. Let G be a graph on [n]. A subset C' = {i1,...,i,} C[n] is a
vertex cover of G if and only if the prime ideal Po = (ziy,...,2;,) contains
I(GQ). In particular, C' is a minimal vertexz cover of G if and only if Pc is a
minimal prime ideal of I(G).

Proof. A generator x;z; of I(G) belongs to Pc, if and only if z;, divides z;x;
for some iy, € C. This is the case if and only if CN{i, 5} # 0. Thus I(G) C Po
if and only if C' is a vertex cover of G.

The second statement follows from the fact that all minimal prime ideals
of a monomial ideal are monomial prime ideals (Corollary 1.3.9). O

Let G be a graph. We write I for the Alexander dual I(G)Y of I(G), and
call it the vertex cover ideal of GG. This naming is justified by the following

Corollary 9.1.5. The ideal I is minimally generated by those monomials
zc for which C € M(G).

Proof. The proof is an immediate consequence of Lemma 9.1.4 together with
Corollary 1.5.5. O

9.1.2 Finite partially ordered sets

A partially ordered set will be called a poset. A subset C' C P is called a
chain of P if C is a totally ordered subset with respect to the induced order.
The length of a chain C'is |C| — 1. The rank of P is the maximal length of a
chain in P.



9.1 Edge ideals of finite graphs 157

A subset P’ of a poset P is called a subposet if, for a,b € P’, one has
a <bin P’ if and only a < b in P.

Let P and @ be posets. A map ¢ : P — @ is an order-preserving map
of posets if a,b € P with a < b in P, then ¢(a) < ¢(b) in Q. We say that P
is isomorphic to @ if there exists a bijection ¢ : P — @ such that both ¢ and
its inverse ¢! are order-preserving.

A lattice is a partially ordered set L such that, for any two elements a
and b belonging to L, there is a unique greatest lower bound a A b, called the
meet of a and b, and there is a unique least upper bound a Vb, called the join
of a and b. Thus in particular a finite lattice possesses both a unique minimal
element 0 and a unique maximal element 1. A subposet L’ of a lattice L is
called a sublattice of L if L’ is a lattice and, for a,b € L', the meet of a and
b in L’ coincides with that in L and the join of a and b in L’ coincides with
that in L.

Ezample 9.1.6. (a) Let L, denote the set of all subsets of [n], ordered by
inclusion. Then £,, is a lattice, called the boolean lattice of rank n.

(b) Let n > 0 be an integer and D,, the set of all divisors of n, ordered
by divisibility. Then D, is a lattice, called the divisor lattice of n. Thus in
particular a boolean lattice is a divisor lattice.

L Z2

Fig. 9.1. A boolean lattice and a divisor lattice.

Let P = {p1,...,pn} be a finite poset with a partial order <. A poset
ideal of P is a subset a of P with the property that if a € o and b € P with
b < a, then b € «. In particular the empty set as well as P itself is a poset
ideal. Let J(P) denote the set of poset ideals of P. If o and 3 are poset ideals
of P, then each of the a N and o U § is again a poset ideal. Hence J(P) is
a lattice ordered by inclusion.

A lattice L is called distributive if, for all a, b, ¢ belonging to L, one has

(avb)Aec=(aNnc)V (bAc),
(anb)Ve=(aVe)A (V).

For example, every divisor lattice is a distributive lattice and, in particular,
every boolean lattice is a distributive lattice.
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{a,b,c,d}
{a,b,c} {a.b,d}
c d {a,b} {b,d}
N fa} (b}
a b
P S(P)

Fig. 9.2. A poset and its lattice of poset ideals.

On the other hand, for an arbitrary finite poset P, the lattice J(P) is a
distributive lattice. Birkhoff’s fundamental structure theorem for finite dis-
tributive lattices guarantees the converse.

Theorem 9.1.7 (Birkhoff). Given a finite distributive lattice L there is a
unique finite poset P such that L is isomorphic to J(P).

Proof. Let L be a finite distributive lattice. An element a € L with a # 0 is
called join-irreducible if whenever a = bV c with b, ¢ € L, then one has either
a = bor a = c. Let P denote the subposet of L consisting of all join-irreducible
elements of L.

We claim L is isomorphic to J(P). We define the map ¢ : J(P) — L
by setting ¢(a) = V,c, a, where a € J(P). Thus in particular () = 0.
Clearly, ¢ is order-preserving. Since each element a € L is the join of the
join-irreducible elements b with b < a in L, it follows that ¢ is surjective.

The highlight of the proof is to show that ¢ is injective. Let a and (8
be poset ideals of P with o # 3, say, 8 ¢ «. Let b* be a maximal element
of f with b* € a. We show ¢(a) # (). Suppose, on the contrary, that

p(a) = p(B). Thus

\a=\/b (9.1)

aca bep

Since L is distributive, it follows that

(V a)Ab = \/(anbd").

acx aco

Since a V b* < b and since b* is join-irreducible, it follows that (\/ ., a) AD* <
b*. However, since b* € 3, one has

(Vo) Ab =\ (brbr) =b".

bep bep

This contradicts (9.1). Hence ¢ is injective.

Now, the inverse map ¢! is defined as follows: For each element ¢ € L,
0 Y(c) is the set of join-irreducible elements a € L with a < ¢. Clearly,
¢ Yc) € J(P) and ¢~ is order-preserving.
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Consequently, L is isomorphic to J(P) with the bijective order-preserving
map .

Finally, since P is isomorphic to the subposet consisting of all join-
irreducible elements of the distributive lattice J(P), it follows that, for two
finite posets P and @, if J(P) is isomorphic to J(Q), then P is isomorphic to
Q. In other words, the existence of a finite poset P such that L is isomorphic
to J(P) is unique. O

Let K[x,y] = K[z1,...,Zn,Y1,--.,Yn] denote the polynomial ring in 2n
variables over a field K. For each poset ideal o of P we associate the squarefree

monomial
o= ([T o0 T w)

pPi€a pj EP\a

of K[x,y]. Let Hp denote the squarefree monomial ideal of K[x,y] which is
generated by all u, with a € J(P):

Hp = ({ua}acg(p))-
We now come to the crucial result of this section.

Theorem 9.1.8. The squarefree monomial ideal Hp has linear quotients.
Thus in particular Hp has a linear resolution.

Proof. Fix a total order < on G(Hp) with the property that if v C «, then
Uy < Uq. Let v C o with v # . Then there is p € a'\ v such that 6 = '\ {p}
is a poset ideal of P. Since us = ypua /Ty, one has y, = us/ ged(us, uq ). Since
p & 7, it follows that y, divides u,. Thus Lemma 8.2.3 says that Hp has linear
quotients, as desired. a

Lemma 9.1.9. HY, is minimally generated by those squarefree quadratic mo-
nomials x;y; for which p; < pj.

Proof. Let Ap denote the simplicial complex on the vertex set

Vn:{xlv"'7xn7y17"'7yn}

whose Stanley-Reisner ideal I, coincides with Hp.

Let w = 21+ @py1 -+ Yn- If w is a squarefree monomial of K[x,y], then
we write Fy, for the set of those variables x; and y; which divide u. Since
{Fy, : a € J(P)} is the set of minimal nonfaces of Ap, it follows that
{Fu/u, s« € J(P)} is the set of facets of AY,. Thus a subset F' C V;, is a face
of A} if and only if there is a poset ideal a of P such that F' C F,/,,,, -

Given a subset F' C V,, we set Fy, = FN{z1,...,2,} and F, = {x; 1 y; €
F}. Note that, for a poset ideal o of P, one has (Fy /y, )z = {@1, ..., 7n} \{2; :
pi € a} and (Fy, )y, )y = {z; : pj € a}. Thus a subset F' C V,, is a face of A,
if and only if there exists a poset ideal a of P such that F,N{x; :p; €a} =0
and with F, C {z; : p; € a}. In particular {z;,y;} is a minimal nonface of
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A}, if p; < p;. We claim that every minimal nonface of AY, is of the form
{zi,y;} with p; < p;.

Since w/ug = x1---x, and w/up = y1---yn, both {x1,...,x,} and
{y1,...,yn} are facets of AY,. Let F C V,, be a nonface of A},. Then F, # 0
and F, # (. Since F is a nonface, there exists no poset ideal o of P with
Fyn{x; : p; € a} = 0 and with F,, C {z; : p; € a}. Let v denote the poset
ideal generated by {p, : ; € F,} (i.e. 7 is the smallest poset ideal of P which
contains {p; : ; € Fy,}). Since F,, C {x; : p; € v}, it follows that {z; : p; € v}
must intersect F,. We choose z; € F}; such that p; € 7. Let p; be a maximal
element in v with p; < p;. Then x; € F, by the choice of 7. Thus {z;,y;} C F
with p; < p;, as desired. a

9.1.3 Cohen—Macaulay bipartite graphs

A vertex i € [n] of G is called an isolated vertex, if G has no edge of the
form {4, j}. Suppose i is an isolated vertex of G, and G’ the induced subgraph
of G on [n] \ {i}. Then obviously G is Cohen-Macaulay over K if and only
if G’ is Cohen—Macaulay over K. Thus, throughout this subsection, we will
always assume that G has no isolated vertices. Our final goal in this section
is to classify all Cohen—Macaulay bipartite graphs.

A finite graph G is called unmixed if all minimal vertex covers of G have
the same cardinality.

Lemma 9.1.10. Every Cohen—Macaulay graph is unmixed.

Proof. Recall that, for a subset C' C [n], the notation Po stands for the
monomial prime ideal of S = Klx1,...,x,] generated by those variables z;
with ¢ € C. Let Ci,...,Cs be the minimal vertex covers of G. By using
Lemma 9.1.4 it follows that Pc,, . .., Pc, are the minimal prime ideals of I(G).
Since S/I(G) is Cohen—Macaulay, all minimal prime ideals of I(G) have the
same height. In other words, all C; have the same cardinality. O

Let P = {p1,...,pn} be a finite poset with a partial order < and V;, =
{Z1,.- s Zn, Y1, .., Yn}. We write G(P) for the bipartite graph on V,, whose
edges are those 2-element subset {x;, y;} such that p; < p;.

In general, we say that a bipartite graph G on W U W’ comes from a
poset if [W| = |W’| and if there is a finite poset on [n], where n = |W]|, such
that after relabelling of the vertices of G one has G(P) = G.

Lemma 9.1.11. A bipartite graph coming from a poset is Cohen—Macaulay.

Proof. Let P ={p1,...,pn} beafinite poset and V,, = {z1,...,Zn,y1,. .., Yn}
The edge ideal I(G(P)) is generated by those 2-element subsets {z;,y;} with
pi < pj. By Lemma 9.1.9 we have that I(G(P)) = H),. Since Theorem 9.1.8
says that Hp has a linear resolution, Theorem 8.1.9 guarantees that I(G(P))
is Cohen—Macaulay, as desired. O
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A pure simplicial complex of dimension d — 1 is called connected in
codimension one if, for any two facets ' and G of A, there exists a sequence
of facets F' = Fy, F1, ..., Fy_1, Fy = G such that |F; N Fiqq1| =d — 1.

For the proof of the main theorem of this section we need the following
result.

Lemma 9.1.12. Every Cohen—Macaulay complex is connected in codimension
one.

Proof. Let A be a Cohen—Macaulay complex of dimension d —1. If d—1 = 0,
the assertions are trivial. Therefore we now assume that d — 1 > 0. Let F
and G be two facets of A. Since A is connected (Lemma 8.1.7), there exists a
sequence of facets F' = Fy, Fi, ..., Fy_1,F; = G such that F; N Fj;1 # (. Let
y; be a vertex belonging to F; N F; 1. Since A is Cohen—-Macaulay, link A ({y;})
is Cohen—Macaulay (Lemma 8.1.8). By working with induction on the dimen-
sion of A, we may assume that link ({y;}) is connected in codimension one.
Moreover there exists a sequence of facets F; = Hy, Hy, -, Hy—1, H, = Fj11
of A, where all H; contain y; with |H;| = d, such that |H; N Hj41| =d — 1.
Composing all these sequences of facets which we have between each F; and
F;41 yields the desired sequence between F' and G. a

We now come to the main result of the present section.

Theorem 9.1.13. A bipartite graph G is Cohen—Macaulay if and only if G
comes from a finite poset.

Proof. The “if” part is already proved by Lemma 9.1.11. To see why the “only
if” part is true, suppose that G is Cohen—Macaulay.

Step 1: Let W U W' be the partition of the vertex set of G. Since each of W
and W' is a minimal vertex cover of G, it follows from Lemma 9.1.10 that
[W|=|W'|. Let W ={x1,...,z,} and W = {y1,...,yn}.

Step 2: For each U C W we write N (U) for the set of those y; € W’ such that
{zs,y;} € E(G) for some x; € U. We claim |U| < |N(U)|. Since (W\U)UN (U)
is a vertex cover of G and since G is unmixed, it follows that |[(W\U)UN (U)| >
|W|. Thus |U| < |N(U)|. Lemma 9.1.2 stated below enables us to assume that
{zs,y:} € E(G) fori=1,...,n.

Step 3: Let A be the simplicial complex on W U W' whose Stanley—Reisner
ideal coincides with the edge ideal I(G). Since each of W and W* is a facet
of A and since A is connected in codimension one, it follows that there is a
sequence of facets Iy, IY,..., F, of A with Fy = W’ and F, = W such that
|Fee1 N Fy| =n—1for k =1,...,s. Let F; = (W' \ {y;}) U {x;}. Since
{z¢,ye} € E(G) for £ =1,...,n, one has ¢ = j. Let, say,

Fr= W' \{yn}) U{zn} ={y1,- - yn—1,2n}.

Since A is Cohen-Macaulay, it follows that link A ({x,, }) is Cohen-Macaulay.
Now, since each of {z1,...,zn,_1} and {y1,...,yn—1} is a facet of linka ({z,})
and since link A ({z,,}) is connected in codimension 1, one may assume that



162 9 Alexander duality and finite graphs

{y17 e ayn—2axn—1}
is a facet of linka({x,}). Thus

{y17 s 7yn—27xn—17xn}

is a facet of A.
Now, repeated applications of this argument enables us to assume that

{y17-~-7yi>$i+17~-~,$n}

is a facet of A for each i = 1,....n. In particular {z;,y;} cannot be an edge
of G if j < 4. In other words, if {z;,y,} is an edge of G, then ¢ < j.

Step 4: Let ¢ < j < k. We now claim that if each of {z;,y;} and {z;,yx} is
an edge of G, then {z;,yr} is an edge of G. Suppose, on the contrary, that
{xi,yr} is not an edge of G. In other words, {z;,yx} is a face of A. Since A
is pure of dimension n — 1, there is an n-element subset F' ¢ W U W’ with
{zi,yx} C F such that no 2-element subset of F' is an edge of G. Since each
of {x;,y;} and {x;,yx} is an edge of G, one has y; ¢ F and x; ¢ F.

On the other hand, since {zy,y¢} is an edge of G for each 1 < £ < n, it
follows that, for each 1 < ¢ < n, one has either x;, € F or y;, ¢ F. Hence if
F=A{xy,...,% ,Yj,.--,Yj.} then

{in, oo yip, g1, dst =[n] and {i1,..., 4 N {j1,...,Js} = 0.
This implies that z; € F' or y; € F'; a contradiction.
Step 5: Let P = {p1,...,pn} be a finite set and define the binary operation
<p on P by setting p; <p p; if {z;,y;} € E(G). It then follows from second,

third and fourth steps that <p defines a partial order on P. Clearly, one has
G = G(P). Thus G comes from a poset, as desired. O

As an immediate consequence of Theorem 9.1.13 we have

Corollary 9.1.14. Let G be a bipartite graph with vertex partition V U V.
Then the following conditions are equivalent:

(i) G is a Cohen—Macaulay graph;
(ii) |V]| = |V'| and the vertices V. = {x1,...,zp} and V' = {y1,...,yn} can
be labelled such that:
(o) {zi,yi} are edges fori=1,...,n;
(B) if {zs,y;} is an edge, then i < j;
(v) if {xi,y;} and {x;,yx} are edges, then {x;,yr} is an edge.

Proof. By Theorem 9.1.13, the graph G is Cohen—Macaulay if and only if
G = G(P) for some poset P = {p1,...,pn}

(i) = (i1): We may assume that p; < p; implies that ¢ < j. With this
labelling (ii) follows from (i).

(ii) = (i): Let P = {p1,...,pn} be the poset with p; < p; if and only
if {z;,y;} € E(G). The conditions in (ii) imply that P is indeed a poset.
Moreover, G = G(P). O
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Figure 9.3 shows of a bipartite graph which satisfies the conditions of
Corollary 9.1.14, and hence is Cohen—Macaulay.

X1 X2 X3 X4
o o)

V1 Y2 Y3 Y4
Fig. 9.3. A Cohen—Macaulay bipartite graph.

Let P = {p1,...,pn} be a poset. For each poset ideal o of P, we set
ay = {z;: p; € a} and oy, = {y;: p; € a}.

Corollary 9.1.15. Let P be a finite poset. Then the minimal vertex covers of
G(P) are precisely the sets o, U oy with o € J(P).

Proof. According to Lemma 9.1.4 the monomial vertex covers of G(P) corre-
spond to the generators of I(G(P))". By Lemma 9.1.9 we have Hy, = I(G(P)).
Therefore, [(G(P))Y = (HY)" = Hp. Thus the assertion follows from the def-
inition of Hp. a

Corollary 9.1.16. An unmized bipartite graph G is Cohen—Macaulay if and
only if it is shellable.

Proof. If G is Cohen-Macaulay, then we may assume by Theorem 9.1.13
that G = G(P) for some finite poset P. Since I(G(P)) = H} and since
by Theorem 9.1.8, Hp has linear quotients, the assertion follows from Propo-
sition 8.2.5. O

9.1.4 Unmixed bipartite graphs
Let G be a bipartite graph without isolated vertices and let

V(G)={z1,...,zm} U{y1,. .., Yn}

denote the set of vertices of G. Suppose that GG is unmixed. In Step 1 and
Step 2 in the proof of Theorem 9.1.13, it is shown that m = n and that one
may assume that {z;,y;} € I(G) for i = 1,...,n. For these two steps in the
proof we use only the fact that G is unmixed.

It follows that each minimal vertex cover of GG is of the form

{xila"-axis,yis+1,"'7yin}

where {i1,...,i,} = [n].
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For a minimal vertex cover C' = {x;,,..., %, Yi, 1> Yi,} of G, we set
C ={zi,...,7;,}. Let L, denote the Boolean lattice on the set {z1,...,2,}
and let
L = {C | C is a minimal vertex cover of G} C L,,.

Remark 9.1.17. Let G and G’ be unmixed bipartite graphs on {z1,..., 2y} U
{ylv oo 7yn}

(i) Both § and {z1,...,z,} belong to L.
(i) If G # G, then I(G) # I(G'). Hence Lo # Lg, since for different
squarefree monomial ideals the set of minimal prime ideals differs.

The first result of this subsection is

Theorem 9.1.18. Let L be a subset of L,,. Then there exists a (unique) un-
mized bipartite graph G on {x1,...,z,} U{y1,...,yn} such that L = Lg if
and only if O and {x1,...,x,} belong to L, and L is a sublattice of L,,.

Proof. Let G be an unmixed bipartite graph with £L = Lg. Let C =

;o ..
{Zis o mi Yiogrs -5 Yin y and C" ={x;,, ..., 25, Y, 15 - -+ Yj, } be minimal
vertex covers of GG. Then

{yk | Tk ¢60@} = {yis+1a'"ayin}U{yjt+1a"'ayjn}7

{ur |2k ¢ CUCTY ={Wirrrs - Yin} W {Yjurs -5 Ui -

First, we show that CNC’ € Lg, that is, C; = (CNC")U{ys | 21 ¢ CNC"}
is a minimal vertex cover of G. Suppose that an edge {z;,y;} of G satisfies
Yj ¢ {yk ‘ Lk ¢ an C/} = {yis+1’ s 7yﬁl} U {yjt+1’ T yjn}' Since C_(I'BE.
(") is a vertex cover of G, one has z; € C (resp. z; € C’). Hence z; € CNC".
Thus C; is a minimal vertex cover of G.

Second, we show that C' U C” € Lg, that is, Co = (CUC") U{yx | zx ¢
C U C"} is a minimal vertex cover of G. Suppose that an edge {x;,y;} of
G satisfies 2; ¢ C U C". Since C (resp. C') is a vertex cover of G, one has
yj € {yi5+1 yeee 7yin,} (resp. y]f6 {z&+1’ s 7yjn})' Thus yj € {yi5+1 yeee 7yin,} n
Wiirs -5y} ={uk | @ ¢ CUC} and hence Cy is a minimal vertex cover
of G.

Conversely, suppose that § and {z1,...,x,} belong to £, and L is a sub-
lattice of L£,,. For each element o € £, let o* denote the set {y; | z; ¢ S}.
Let I be the ideal (¢, (cUa*). We will show that there exists an unmixed
bipartite graph G such that I = (z;y; | {z:,y;} € E(G)).

Since § € £ and {z1,...,2,} € L, it follows that I C (z;y; | 1 <i,5 < n).
Suppose that a monomial v of degree > 3 belongs to the minimal set of
generators of 1.

If v = z;x;u where ¢ # j and u is a (squarefree) monomial, then there
exist o, 0 € L such that z; € a\§, z; € B\, u ¢ (aUa*) and u ¢ (BU G*).
Since L is a sublattice of £,,, one has aN g € L. Note that (aNG)* = a*UF*.
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Hence I C Iy, where I; is the ideal generated (o N 3) U (a* U 5*). However,
none of the variables in v appears in the set (N 3) U (a* U 5%).

If v = y,y;u where ¢ # j and u is a (squarefree) monomial, then there exist
o, € L such that y; € o\ 5%, y; € 8\ o*, u ¢ (aUa*) and u ¢ (BU G*).
Since L is a sublattice of £,,, « U3 € L. Note that (« U 3)* = a* N 3*. Hence
I C Iy, where I is generated by (U 3) U (a* N §*). However, none of the
variables in v appears in the set (U 3) U (a* N G%).

Thus the minimal set of generators of I is a subset of {z;y; | 1 <14,j < n}.
Hence there exists a bipartite graph G such that I = I(G). Since the primary
decomposition of the edge ideal I(G) of G is I = cepq(q)(C), where M(G)
is the set of minimal vertex covers of G, one has M(G) = {aUa* | a € L}.
Thus £ = L¢. Since the cardinality of each oo U o* with o« € £ is n, it follows
that G is unmixed, as desired. a

The next theorem tells which sublattices of L£,, correspond to Cohen—
Macaulay bipartite graphs. A sublattice £ of £,, is called full if rank £ = n.

Theorem 9.1.19. A subset L of L, is a full sublattice of L, if and only if
there exists a Cohen—Macaulay bipartite graph G on {x1, ..., o }U{y1, ..., Yn}
with £ = L.

Proof. Let G be a Cohen—-Macaulay bipartite graph on the set {z1,...,2,}U
{y1,---,Yn}. Theorem 9.1.13 guarantees the existence of a finite poset P with
G = G(P), where | P| = n. Corollary 9.1.15 says that L& coincides with J(P).
Thus L¢ is a full sublattice of £,,.

Conversely, suppose that £ is a full sublattice of £,,. One has £ = J(P)
for a unique poset P with |P| = n (Theorem 9.1.7). Let G = G(P). Then G
is a Cohen—Macaulay bipartite graph. Corollary 9.1.15 says that L coincides
with J(P). Thus Lg = L, as required. O

9.1.5 Sequentially Cohen—Macaulay bipartite graphs

The main purpose of this subsection is to show the following extension of
Corollary 9.1.16.

Theorem 9.1.20. A bipartite graph is sequentially Cohen—Macaulay if and
only if it is shellable.

For a vertex v of a graph G, let Ng(v) denote the set of vertices w of G
such that {v,w} € E(G). The number degv = |Ng(v)| is called the degree
of v.

For the proof of the theorem we need the following two lemmata.

Lemma 9.1.21. Let G be a bipartite graph with bipartition {1, ...z} and
{y1,-- - yn}- If G is sequentially Cohen—Macaulay, then there exists a vertex
v € V(G) with degv = 1.
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Proof. We may assume that m < n, and that G has no isolated vertices.
Let I¢ = I(G)Y be the vertex cover ideal of G, and let L = (Ig)},) be the
squarefree part of the nth component of I;. Since G is sequentially Cohen—
Macaulay, it follows from Theorem 8.2.20 that Is is componentwise linear.
Hence Theorem 8.2.17 says that L has a linear resolution.

Let ¢1,...,9, be a minimal monomial set of generators of L. We may as-
sume that g1 = y1 -y, and g2 = T1- - Ty¥Y1 - Yn—m- Lhen xy---Tpg1 —
Y1 - Ymg2 = 01is arelation of g; and g,. Since L has linear relations, the previ-
ous relation is a linear combination of linear relations. Therefore there exists x;
and gy, such that x;91 —vgr = 0, where v is a variable. It follows that v = y; for

some j and gr = Tiy1 -+ Yj—1Yj+1 Yoo Since {i, Y1, Yi-1,Yj41, -0 Unt
is vertex cover of G, it follows that {z,y,;} cannot be an edge of G for k # i.
Thus degy; = 1, as desired. O

For the next lemma and its proof we introduce the following notation: let
G be a graph and U C V(G) a subset of the vertex set of G. Then we write
G\ U for the induced subgraph of G on V(G) \ U.

Lemma 9.1.22. Let x be a vertex of G, and let G' = G\ ({x} U Ng(x)). If
G is sequentially Cohen—Macaulay, then G’ is sequentially Cohen—Macaulay.

Proof. Let A be the simplicial complex of independent sets of G and A’ the
simplicial complex of independent sets of G’. We first show that

A" =linka{z}. (9.2)

Let F € linka{z}. Then z ¢ F and FU{z} € A. Hence (FU{x})NNg(z) = 0.
Thus F C V(G’). Hence F € A, since F is an independent set of G'.

Conversely, if F' € A’, then F is an independent set of G'. Since F N
Ng(z) =0, it follows that F'U {x} is an independent set of G.

Now let Fy, ..., Fs be the facets of A. We may assume that the Fi, ..., F,.
are precisely those facets which contain x. It then follows from (9.2) that
F| = Fi\{z},...,F. = F.\ {«} are the facets of A’.

Next observe that

A/(’L) = linkA(i+1){I} (93)

for all ¢+ < d, where d = dim A’.

In fact, if F} is a face of A’ with dim F} = d, then F/ U {z} € A(d + 1).
Therefore {z} € A(i + 1) for all i < d+ 1. Suppose now F is a facet of A’(3).
Then dim F' = 4 and F C F; U {z}. That is, F U {z} C Fj. It follows that
F U {z} is a facet of A(i 4 1), and hence F' € linka(;41){x}. Conversely, let
F € linkagi41){z} be a facet. Then dim F' = i and F'U {z} € A. Therefore,
F U {z} C F; for some j. In other words, F' C F}; \ {z}. This implies that F’
is a facet of A'.

The definition of sequentially Cohen—Macaulay says that A(i) is Cohen—
Macaulay for all i. By (9.3) and Corollary 8.1.8, it follows that A’(¢) is Cohen—
Macaulay for all . Hence A’ is sequentially Cohen—Macaulay for all i. O
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Proof (Proof of Theorem 9.1.20). If G is shellable, then G is sequentially
Cohen—Macaulay (Corollary 8.2.19). Conversely, we prove by induction on
the number of vertices of G that G is shellable, if G is sequentially Cohen—
Macaulay. By Lemma 9.1.21 there exists a vertex x of G with degz = 1.
Let y be the vertex adjacent to x. Applying Lemma 9.1.22 we see that G; =
G\ ({z}UN¢g(z) and Ga = G\ ({y}UN¢(y)) are sequentially Cohen—Macaulay.
By our induction hypothesis we assume that G; and G2 are shellable.

Let FY,..., F! be a shelling of Ay = A(Gy) and Hj,..., H. be a shelling
of Ay = A(Gs). By Lemma 9.1.21, F] U {z},...,F/ U {z} are the facets of
A = A(G) which contain z, and Hj U {z},..., H. U {z} are the facets of
A which contain y. Since an independent set of G cannot contain both x
and y, these two sets of facets are disjoint. On the other hand, each maximal
independent set contains either = or y, since degx = 1. Thus

Flu{z},...,F.U{z}, HH U{z},...,H U{x}

is precisely the set of facets of A.
We now show that this is a shelling of A. In fact, let FF = F/ U {z} and
H = H;U{y}. Since H; U {z} is an independent set of G, there exists a facet
of A containing it. This facet must be of the type F' = F,U{z} for some ¢. It
follows that F'\ F' = {y} and that F’ comes before H in the shelling order.
The remaining cases to be considered follow directly from the above
shellings of Ay and As. a

9.2 Dirac’s theorem on chordal graphs

We discuss the algebraic aspects of Dirac’s theorem by using Alexander du-
ality.

9.2.1 Edge ideals with linear resolution

We say that a finite graph G on [n] is decomposable if there exist proper
subsets P and @ of [n] with PUQ = [n] such that PN Q is a clique of G and
that {i,j} ¢ E(G) for all i € P\ Q and for all j € @\ P.

Lemma 9.2.1. Fvery chordal graph which is not complete is decomposable.

Proof. Let G be a chordal graph on [n] which is not complete. Let a and b be
vertices of G with {a,b} € F(G).

A subset A C [n] is called a separator of G if there exist subsets P and
Q of [n] with PUQ = [n] and PN Q = A and that {i,j} ¢ E(G) for all
i€ P\ Q and for all j € @\ P. Clearly [n]\ {a,b} is a separator of G. Let
B C [n] \ {a,b} be a minimal separator (with respect to inclusion) of G.

What we must prove is that B is a clique of G. Let |B| > 1 and x,y € B
with 2 # y. Let P and @ be subset of [n] with PUQ = [n] and PNQ = B
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and that {i,j} € F(G) for alli € P\ Q and for all j € @\ P. Let Cy,...,C;
be the connected components of the induced subgraph of G on P\ B and
Dy, ..., D; the connected components of the induced subgraph of G on @\ B.

We claim that there is a vertex xo of C; such that {z¢,z} € E(G). To
see why this is true, suppose that {z,2} € E(G) for all vertices z of C. Let
V denote the set of vertices of C7 and B’ = B\ {z}. Let Py = V U B’ and
Qo = [n]\ V. Then Py UQy = [n] and Py N Qo = B’. Since {z,z2} ¢ E(G)
for all z € V, it follows that {i,j} ¢ E(G) for all i € Py \ Qo and for all
Jj € Qo \ Py. Hence B’ is a separator of G, which contradicts the minimality
of B. Consequently, there is a vertex zp of Cy such that {zg,z} € E(G).
Similarly, there is a vertex yo of C; such that {yo,y} € E(G). In addition,
there is a vertex 7 of Dy such that {z1,2} € E(G), and there is a vertex y;
of Dy such that {y1,y} € E(G).

Now, let W; be a walk of minimal length between = and y whose vertices
belong to V U{z,y} and W5 a walk of minimal length between x and y whose
vertices belong to V' U {z,y}, where V' is the set of vertices of D;. Then
combining W7 and Ws yields a cycle C' of G of length > 3. The minimality
of Wy and Wy together with the fact that {i,j} ¢ E(G) for all i € V and
j € V' guarantees that, except for {z,y}, the cycle C has no chord. Since G
is chordal, the edge {z,y} must belong to G.

Hence {z,y} € E(G) for all  and y of B with z # y. Thus B is a clique
of GG, as desired. a

Corollary 9.2.2. Let G be a chordal graph on [n] and A(G) its clique com-
plex. Then H;(A(G); K) =0 for all i # 0.

Proof. We work with induction on the number of vertices on G. If G is a
complete graph, then A(G) is the simplex on [n]. Thus H;(A(G); K) = 0 for
all 7, see Example 5.1.9. Suppose that G is not complete. Lemma 9.2.1 says
that G is decomposable. Let P and @ be proper subsets of [n] with PUQ = [n]
such that PNQ is a clique of G and that {4, j} ¢ E(G) for all i € P\ @ and for
all j € Q\ P. Let A= A(G), Ay = A(Gp), Ay = A(Gg) and I' = A(Gpno)-
Then A = AyUA and I' = A; N As,. Since each of Gp and G is chordal and
since each of P and (@ is a proper subset of [n], it follows from the induction
hypothesis that H;(A;; K) =0 for all i # 0 and H;(As; K) = 0 for all 4 # 0.
In addition, since PN Q is a clique of G, I is a simplex. Thus H;(I; K) = 0
for all ¢ # 0.

Now, the reduced Mayer—Vietoris exact sequence of Ay and Ay (Proposi-
tion 5.1.8) is given by

- — Hy (I K) — Hy(A K) @ Hy(Ag; K) — Hi(A; K)
— Hp_1(I'K) — Hp_1(A K) @ Hy (Ao K) — Hy—1 (A K)

—_— e,

Hence H;(A; K) = 0 for all i # 0, as required. O
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Theorem 9.2.3 (Froberg). The edge ideal 1(G) of a finite graph G has a
linear resolution if and only if the complementary graph G of G is chordal.

Proof. Since I(G) =1 A@G) what we must prove is that the Stanley—Reisner
ideal of the clique complex A(G) of G has a linear resolution if and only if G
is chordal.

Hochster’s formula (Theorem 8.1.1) says that /g, has a 2-linear resolu-
tion if and only if, for any subset W C [n], one has }L(A(G)W; K) =0 unless
1 =0.

Suppose that G is not chordal. Then there is a cycle of G of length ¢ > 3
with no chord. Let W be the set of vertices of C. Then A(G)y coincides with
C and dimg H,(C; K) # 0, see Example 5.1.9. Thus I5@) cannot have a
2-linear resolution.

On the other hand, suppose that G is chordal. Let W be a subset of [n].
Then A(G)w is the clique complex of the induced subgraph Gy of G on W.
It is clear that every induced subgraph of a chordal graph is again chordal. In
particular Gy is chordal. Thus by Corollary 9.2.2, one has H;(A(G)w; K) =0
for all 4 £ 0. Thus [ A@) has a 2-linear resolution. O

9.2.2 The Hilbert—Burch theorem for monomial ideals

Let I C S be a monomial ideal with G(I) = {u1,...,us}, where s > 2. We
introduce the (3) x s matrix

(4,9)
Ar = (ap " )1<i<j<s1<k<s

(4,5)

whose entries a, /€ S are
af;i’j) = u;/ ged(ug, uyj), agi"j) = —u;/ ged(us, uj), and ay (D) — 0 if k ¢ {4,7}
foralll1<i<j<sandforal l1<k<s.

If the monomials uq,...,us have the greatest common divisor w # 1,
then one has A; = Ap, where I’ is the monomial ideal with G(I') =

{ui/w, ... us/w}.
For an arbitrary matrix C we denote by C(j) the matrix which is obtained
from C by omitting the jth column. With this notation introduced one has

Lemma 9.2.4 (Hilbert—Burch). Let I C S be a monomial ideal with

G(I) = {u1,...,us}, where s > 2, and suppose that the monomials uy, ..., us

have no common factor. Then the following conditions are equivalent:

(a) projdimI =1

(b) The matriz Ay contains an (s — 1) x s submatriz AﬂI with the property
that, after relabelling the rows of A§ if necessary, one has

(—1)7 det(A%(j)) = u; for all .
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Moreover, when one has such an (s — 1) x s submatriz A’}, a minimal
graded free resolution of I is

s—1 g S
0— @ S(~b;) =L P S(— deg u;)—I—0,
j=1 j=1

where b; = deg(uyu, / ged(uy,uy)) if the jth row of AﬁI is the (u,v)th row of
Ag.

Proof. (a) = (b): We first observe that the matrix A; describes the map
Ty — Ty of the Taylor complex for the sequence uq,...,us (Theorem 7.1.1).
Therefore the first syzygy module G C T; = @jzl Se; of S/I in the Tay-
lor complex is generated by the elements agm )ei + a;m )ej. By using that
projdim I = 1 and counting ranks, we see that G is free of rank s — 1. In par-
ticular, G is minimally generated by s —1 homogeneous elements. The graded
version of Nakayama’s lemma implies that we can choose a minimal set of
generators of G among the Taylor relations. In other words, we can choose
s — 1 of the relations agw)ei + ay’j)ej which form a basis of the free module
G. The submatrix of A; whose rows correspond to these elements will be the

desired matrix Aﬁl. Set FF=1T; and let « : G — F be the linear map defined
by A’}. Then we obtain the exact sequence

0 G —2-F 2.5 S/T — 0, (9.4)

where p(e;) =u; fori =1,...,s.
By the Hilbert—Burch theorem as presented in [BH98, Theorem 1.4.17] it
follows that

0 G2 Fr-Y,g S/T —— 0 (9.5)

is exact, where ¢(e;) = (1) det(A% (i) for i =1,...,s.

The condition that the monomials uq,...,us have no common factor im-
plies that height I > 2, so that dim S/I < n — 2. Since projdim S/I = 2, the
Auslander-Buchsbaum formula (see Corollary A.4.3) shows that depth S/I =
n — 2. Since one always has that depthS/I < dimS/I, it follows that
depth S/I = dim S/I. In other words, S/I is Cohen-Macaulay of dimension
n— 2.

Since S is Cohen—Macaulay, one has grade I = height I = 2 ([BH98, Corol-
lary 2.1.4]). Therefore, Ext’y(S/I,S) = 0 for i < 2. This implies that the S-
duals of the exact sequences (9.4) and (9.5) are acyclic. That is, one has exact
sequences

0 S 2 5 Fr %, GF

and
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We conclude that Im ¢* = Imv¥*. Since both these modules are cyclic their
generators differ only by a unit of S, that is, by an element ¢ € K\ {0}. Hence

cu; = (—1)idet(A§(i)) for i=1,...,s.

Since the entries of AﬁI are all of the form +u with v € Mon(S), we conclude
that ¢ is an integer. Suppose that ¢ # +1. Then there exists a prime number
p which divides c. The ideal [ is defined over any field and our considerations
so far did not depend on the base field K. Thus we may as well assume that
K =7Z/(p). This leads to a contradiction, since then the ideal is generated by
the maximal minors of Ag is the zero ideal and is not I, as it should be. Thus
¢ = =£1. If ¢ = —1, then we exchange two rows of Aﬁl.

(b) = (a): Since the generators of I have no common factor, condition (b)
implies that the ideal of maximal minors of Aﬁl has grade > 2. Then a direct
application of [BH98, Theorem 1.4.7] yields the desired conclusion. a

Any submatrix of A; as in Lemma 9.2.4(b) is called a Hilbert—Burch
matrix of I. After fixing the order of the generators of I, we consider two
Hilbert—Burch matrices to be equal if they coincide up to permutation of rows.

In general, there is not a unique Hilbert—Burch matrix.

Ezample 9.2.5. Let n = 6 and I = (z425%6,T1T5%6, T1T2T6, T12225). Thus
the 6 x 4 matrix Ay is

r1 —XT4 0 0
1T 0 —X4T5 0

0 T2 —I5 0
12 0 0 —x426

0 To 0 —Tg

0 0 Iy —T6

By using Lemma 9.2.4 one has projdim I = 1. In fact, I has three Hilbert—
Burch matrices

Xr1 —T4 0 0 Tr1 —T4 0 0 Tr1 — T4 0 0
0 o —X5 0 s 0 To —ITs 0 and 0 ) 0 —Tg
0 ) 0 —Zg 0 0 s —Xg 0 0 s —Te

Thus, for example,

0 X9 —Ts 0

ry—x4 0 0
0 0 Ty —Xg

0 — S(—4)3 S(—3)4 I 0

is a minimal graded free resolution of 1.
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9.2.3 Chordal graphs and quasi-forests

Let G be a finite graph on [n]. A perfect elimination ordering of G is
an ordering iy, ...,i2,1; of the vertices 1,2,...,n of G such that, for each
1<j<n G ={ir €[n]:1<k <y {ir,i;} € E(G)} is a clique of G. In
1961 G. A. Dirac proved that a finite graph G is chordal if and only if G has
a perfect elimination ordering.

Let A be a simplicial complex. A facet F' € F(A) is said to be a leaf of
A if (either F' is the only facet of A, or) there exists a facet G € F(A) with
G # F, called a branch F, such that HNF C GN F for all H € F(A) with
H # F. Observe for a leaf F' and a branch G of F, the subcomplex A’ with
F(A") = F(A)\ {F} coincides with the restriction A\ 7\ (Gnr))- A vertex i
of A is called a free vertex of A if ¢ belongs to exactly one face. Note that
every leaf has at least one free vertex.

The following example displayed in Figure 9.4 shows that a facet with a
free vertex need not be a leaf.

VAVAVAN

Fig. 9.4. A nonleaf with a free vertex.

A quasi-forest is a simplicial complex such that there exists a labelling
Fy, ..., F, of the facets of A, called a leaf order , such that foreach 1 <7 <m
the facet F; is a leaf of the subcomplex (F1,... F;). A quasi-tree is a quasi-
forest which is connected.

Lemma 9.2.6. A finite graph G has a perfect elimination ordering if and only
if the clique complex A(G) of G is a quasi-forest.

Proof. “Only if”: Let G be a graph on [n] and suppose (for simplicity) that
the ordering n,n — 1,...,1 is a perfect elimination ordering. Thus, for each
1<j<n, Fj={ken]:1<k<j{kj} € EG)}U{j} belongs to A(G).
Let F € A(G) and j the largest integer for which j € F. Since F is a clique
of G, one has {k,j} € E(G) for all k € F with k # j. Hence F C F;. In
particular, A(G) = (Fy,..., F,). Let 1 < i < n and j the largest integer < ¢
for which j € F;. Then F, N F; C F; N F; for all k < i. In fact, if a € F, N F;
with a # j, then a < k < i with a € F;. Thus a < j and {a,j} € E(G). Hence
a < F]

We will show, in general, that if a simplicial complex A can be obtained
from faces F1, ..., Fy, such that, for each ¢, there is j < ¢ with FyNF; C F;NF;
for all &k < 4, then A is a quasi-forest. Our proof will be done by working
with induction on m. Hence we may assume that the simplicial complex I
obtained from Fi,..., F,,_1 is a quasi-forest with I # A. Thus there is a
leaf order Gi,...,G, of the quasi-forest I', where F(I') = {G1,...,G,} C
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{F1,...,Fpn_1}. Now, there is jo < m such that FyNF,, C F; NF,, forall k <
m. It then follows that each vertex belonging to F,, \ F}, is a free vertex. Let
F;, C G,. If it happens that G C Fy,, then Gy,...,Gs_1, F, G411, ..., Gy
is a leaf order of A. Because, since each vertex F,,, \ G5 is a free vertex,
one has G; N G; = F,,, N G; for all 7. On the other hand, if G5 ¢ F,,, then
Gy, NF, C F;,NF,, = GsNF, for all £k < r. Thus F,, is a leaf of A and
G1,...,G,, F,, is a leaf order of A.

“If”: Suppose that A(G) is a quasi-forest with a leaf order F1, ..., F,. We
may suppose that n is a free vertex of Fy. Let F, = F, \ {n}. If I}, has more
than one free vertex, then I, ..., 1, I, is a leaf order of A(G’) where G’
is the induced subgraph of G on [n — 1]. Thus A(G’) is again a quasi-forest.
By using induction, we may assume that, say, n — 1,n — 2,...,1 is a perfect
elimination ordering of A(G’). Then n,n — 1,...,1 is a perfect elimination
ordering of A(G). On the other hand, if n is the only free vertex of Fy, then
F1,F,, ..., Fy_1 is a leaf order of A(G’), and as before we see that A(G) has
a perfect elimination ordering. a

Lemma 9.2.7. A quasi-forest is a flag complez.

Proof. Let A be a quasi-forest on [n] and Fi,..., F, its leaf order. We work
with induction on g. Let ¢ > 1. Since A" = (F4,. .., Fy_1) is a quasi-forest, it
follows that A’ is a flag complex. Let F; with ¢ < g be a branch of Fj,. Thus
A= Ap\(F,\(F,N )

Suppose there exists a minimal nonface H of A having at least three
elements of [n]. Since A’ is flag, H ¢ A’, and therefore there exists b € Fj,
with b € H, and since H is a nonface, there exists a € H with a ¢ Fj.

Since |H| > 2, one has {a,b} € A. Thus there is F; with j # ¢ such that
{a,b} € Fj. Hence b € F; N F,. Thus b € F;. Hence H N (Fy \ (F; N F;)) = 0.
This shows that H is a minimal nonface of A’, a contradiction. a

Lemma 9.2.8. Let G be a finite graph on [n] and I' a simplicial complex on
[n] such that G is the 1-skeleton of I'. Then I' = A(G) if and only if I is a
flag complex.

Proof. Let ([g]) denote the set of 2-element subsets of [n] and A(I") the set
of minimal nonfaces of I'. If F' is a face of I', then F is a clique of G. Thus
I € A(G). Moreover, since N (I')N ([Z]) = E(G) and since N'(A(G)) = E(G),
it follows that I' = A(G) if and only if N'(I") C ([g]), i.e. I' is a flag complex.

O

Corollary 9.2.9. A finite graph G has a perfect elimination ordering if and
only if G is the 1-skeleton of a quasi-forest.

Proof. Since G is the 1-skeleton of A(G), it follows that G is the 1-skeleton
of a quasi-forest if A(G) is a quasi-forest. Conversely, if G is the 1-skeleton of
a quasi-forest I', then by Lemma 9.2.7 and Lemma 9.2.8 one has I" = A(G).
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Hence A(G) is a quasi-forest. Consequently, G is the 1-skeleton of a quasi-
forest if and only if A(G) is a quasi-forest. Thus Lemma 9.2.6 guarantees that
G has a perfect elimination ordering if and only if G is the 1-skeleton of a
quasi-forest, as required. a

Given a simplicial complex A on [n] with F(A) = {F1,..., F,}, we intro-
duce the () x ¢ matrix

(4,3)
Ma = (a3 )1<i<j<q1<k<q

whose entries aff’j) €S =Klzy,...,x,] are

agw) = TF\F;> ag-w) = —Tp\F,, and a,(;’j) =0if k& {i,j}
forall1<i<j<gqgandforal 1<k<gq.

Given a simplicial complex A on [n], we introduced in Chapter 1 the
simplicial complex A = ([n]\ F : F € F(A)) on [n]. Let I(A) denote the facet
ideal of A. Let Az denote the (%) x ¢ matrix associated with the monomial
ideal I(A); see Subsection 9.2.2. One has M, = Aj(a), because

F\Fj = ([n]\ Fj) \ ([n] \ (F5 U Fy)) = ([n] \ F5) \ (([n] \ F3) 0 ([n] \ F})).
The quasi-forest can be characterized in terms of the matrix M. In fact,

Lemma 9.2.10. A simplicial complex A = (Fy,...,Fy) on [n] is a quasi-
forest if and only if the matrix Ma contains a Hilbert—Burch matrix for the
ideal (T(n) /TRy, .- Tn) /T F,)-

Proof. “Only if”: Let A be a quasi-forest on [n] and fix a leaf order Fi, ..., F,
of the facets of A. Let ¢ > 1. Let Fj, with £ # ¢ be a branch of Fj and
A’ the simplicial complex on [n] \ (F, \ Fx) with F(A") = F(A) \ {F,}.
Since A’ is a quasi-forest, it follows that M contains a (¢ — 2) x g sub-
matrix M’ where none of the (i,¢)th rows, 1 < i < ¢, of Ma belongs
to M', with the property that, for each 1 < j < ¢, if M'(j,q) is the
(g — 2) x (¢ — 2) submatrix of M’ obtained by removing the jth and gth
columns from M’, then |det(M'(j,q))| = )\ (r,\Fy)/TF,;- Let Mg denote
the (¢ — 1) x ¢ submatrix of M obtained by adding the (k, ¢)th row of Ma
to M’. Since agk’q) = —Tp,\F,, one has |det(MﬁA(j))| = Z[y)/zF, for each
1 < j < q. Moreover, since |det(MﬁA(q))\ = rp\r, det(M'(k,q) and since
| det(M(k, q))| = )\ (£, \Fy) /5, ome has |det(ME ()] = @ /2,

“If”: Suppose that the matrix Ma contains a (¢ — 1) X ¢ submatrix MﬁA
with the property that, for each 1 < j < ¢, if Mg(j) is the (¢ — 1) x (¢ —
1) submatrix of MuA obtained by removing the jth column from MﬁA7 then
|det(MﬁA(j))\ = Zpp)/2F;. Let 2 denote the finite graph on [n] whose edges
are those {i,j} with 1 <14 < j < n such that the (4, j)th row of M belongs
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to Mg. We claim that {2 contains no cycle. To see why this is true, if C'is a
cycle of 2 with {ig,jo} € E(G), then in the matrix MﬁA(jO) the (7, 7)th rows
with {i,7} € E(C) are linearly dependent. Thus det(M% (jo)) = 0, which is
impossible. Hence {2 contains no cycle. Since the number of edges of {2 is ¢—1,
it follows that (2 is a tree, i.e. a connected graph without cycle. Since {2 has
an end vertex, i.e. a vertex which joins with exactly one vertex, it follows that
there is a column of MﬁA which contains exactly one nonzero entry. Suppose,
say, that the gth column contains exactly one nonzero entry and (k, ¢)th row
of M appears in MﬁA. Then, for each 1 < j < ¢, the monomial zf \ g,
divides det(M%(4)). Hence F, \ F}, C [n]\ F;. Thus (F, \ Fx) N F; = 0 for
all 1 < j < g. In other words, F; N F, C F, N F, for all 1 < j < ¢q. Hence
F, is a leaf of A and F}, is a branch of F,. Let A’ be the simplicial complex
on [n]\ (Fy \ Fx) with F(A") = F(A) \ {F,}. and MnA/ the (g —2) x (¢ —1)
submatrix of M, which is obtained by removing the (k,q)th row and gth
column from MﬁA. Since A’ is a simplicial complex on [n] \ (Fy, \ F)) and
since T\ F, Tin)\(F,\Fy)/TF; = T[n)/TF; for each 1 < j < g, by working with
induction on ¢, it follows that A’ is a quasi-forest. Hence A is a quasi-forest,
as desired. O

The tree {2 which appears in the proof of “If” part of Lemma 9.2.10 is
called a relation tree of a quasi-forest A. A relation tree of a quasi-forest
is, in general, not unique. The inductive technique done in the “Only if” part
suggests the way how to find all relation trees of a quasi-forest.

In Example 9.2.5 one has I = I(A), where A is the quasi-forest with the
facets Fy = {1,2,3}, Fy = {2,3,4}, F5 = {3,4,5} and Fy = {3,4,6}. Each of
the three 3 x 4 submatrices of A; is a relation tree of A.

Since Ma = Aj(4), by using Lemma 9.2.10 together with Lemma 9.2.4,
we now establish our crucial

Corollary 9.2.11. Let A be a simplicial complex on [n] and I(A) the facet
ideal of A. Then A is a quasi-forest if and only if projdim I(A) = 1.

9.2.4 Dirac’s theorem on chordal graphs

It turns out that, by using Alexander duality, the algebraic mechanism behind
Dirac’s theorem is quite rich.

Theorem 9.2.12. Given a finite graph G on [n] with E(G) # ([g]), the fol-
lowing conditions are equivalent:

(i) G is chordal;

(ii) Ta(e) has a linear resolution;
(iii) reg IA(G =2;

(EV§ projdim Izqyv = 1;

v) A(G) is a quasi- forest
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(vi) G is the 1-skeleton of a quasi-forest;
(vil) G has a perfect elimination ordering.

Proof. First, Theorem 9.2.3 says that G is chordal if and only if 1) has a
linear resolution. Second, the ideal I5(g) = I(G) is generated by quadratic
monomials since A(G) is flag. Thus /() has a linear resolution if and only
if reg I () = 2. Moreover, since reg I o(g) = projdim I5(g)v + 1 (Proposition
8.1.10), one has reg Iy = 2 if and only if projdim I5(g)v = 1. In addition,
since Tagyv = I(A(G)) (Lemma 1.5.3), Corollary 9.2.11 guarantees that
projdim I (g)v = 1 if and only if A(G) is a quasi-forest. On the other hand, as
was shown in the proof of Corollary 9.2.9, the clique complex A(G) is a quasi-
forest if and only if G is the 1-skeleton of a quasi-forest. Finally, Corollary
9.2.9 says that G is the 1-skeleton of a quasi-forest if and only if G has a

perfect elimination ordering. O

9.3 Edge ideals of chordal graphs

In this section we classify all Cohen—Macaulay chordal graphs and in addition
show that all chordal graphs are shellable.

9.3.1 Cohen—Macaulay chordal graphs
Let A be a simplicial complex.

Theorem 9.3.1. Let K be a field, and let G be a chordal graph on the vertex
set [n]. Let Fy, ..., Fy, be the facets of A(G) which admit a free vertex. Then
the following conditions are equivalent:

(i) G is Cohen—-Macaulay;
(ii) G is Cohen—Macaulay over K ;

(iil) G is unmized;

(iv) [n] is the disjoint union of Fy, ..., Fp,.

For the proof of our main theorem we need the following algebraic fact:

Lemma 9.3.2. Let R be a Noetherian ring, S = R[z1,...,x,] the polynomial
ring over R, k an integer with 0 < k <n, and J the ideal

(L, ... gz, {ziz; hi<icj<n) C S,

where Iy, ..., I are ideals in R. Then the element x = Z?Zl T; 1S a nonzero

divisor on S/ J.
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Proof. For a subset T' C [n] we let Lt be the ideal generated by all monomials
z;xy with i,j € T and i < j, and we set Iy =} . I; and X7 = ({z;}jer).

One has
Ly =) Xr\(0)-
LeT

Hence we get

J = (lela"'v-[kxkaL[n]) = m (ITaX[k]\TaL[n])

TC[k]
= (") Uz, Xpoprs Lpap o)
TCk]
= () U Xpne Xen@nonge)
TCIk]
cetn\(K\T)
= ﬂ (I, X\ 103)-

TCIk]
ee[nIN((KINT)

Thus in order to prove that x is a nonzero divisor modulo J it suffices
to show that z is a nonzero divisor modulo each of the ideals (I7, X[\ 1¢})-
To see this, we first pass to the residue class ring modulo I, and hence if
we replace R by R/Ir it remains to be shown that z is a nonzero divisor on
Rlzy,...,zn)/(T1,. .. To—1,%p41, ... Zy). But this is obviously the case. O

Proof (of Theorem 9.3.1). ()= (ii) is trivial.

(ii)= (iii) follows from Lemma 9.1.10.

(iii)= (iv): Let G be a unmixed chordal graph on [n]. Let Fy,..., F,, be
those facets of A(G) which have a free vertex. Fix a free vertex v; of F; and set
W = {v1,...,vn}. Suppose that B = [n] \ (U2, F;) # 0, and write G|p for
the induced subgraph of G on B. If X C B is a minimal vertex cover of G|p,
then XU((U;~, F;)\W) is a minimal vertex cover of G, because {v;,b} ¢ E(G)
for all 1 < i < m and for all b € B. In particular G|g is unmixed. Since the
induced subgraph G|p is again chordal, by working with induction on the
number of vertices, it follows that if Hy,..., Hs are the facets of A(G|p) with
free vertices, then B is the disjoint union B = U;Zl Hj. Let v} be a free vertex
of H; and set W' = {v{,...,v.}. Since ((U/~, F;) \W)U(B\W’) is a minimal
vertex cover of G and since G is unmixed, every minimal vertex cover of G
consists of n — (m + s) vertices.

We claim that F; N F; = 0 for ¢ # j. In fact, if, say, F1 N F» # () and
if w € [n] satisfies w € F; for all 1 <4 < ¢, where £ > 2, and w ¢ F; for
all £ < i < m, then Z = (U*, F;) \ {w,ve41,...,0} is a minimal vertex
cover of the induced subgraph G’ = G|j,\p on [n] \ B. Let Y be a minimal
vertex cover of G with Z C Y. Since Y N B is a vertex cover of G|p, one has
|Y'NB| > |B|—s. Moreover, |YN([n]\B)| > n—|B|—(m—{+1) > n—|B|—m.
Hence Y| > n — (m + s), a contradiction.
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Consequently, a subset Y of [n] is a minimal vertex cover of G if and only
if [YNF;|=|F;|—1foralll <i<mand|YNH;|=|H;|-1foralll <j<s.

Now, since A(G|p) is a quasi-forest (Theorem 9.2.12), one of the facets
Hy,...,H; must be aleaf of A(G|p). Let, say, H; be a leaf of A(G|g). Let &
and ¢’, where § # ¢’, be free vertices of Hy with {d,a} € E(G) and {¢’,a'} €
E(G), where a and o' belong to [n] \ B. If a # o’ and if {a,a’'} € E(G), then
one has either {d,a'} € E(G) or {¢’,a} € E(G), because G is chordal and
{4,0'} € E(G). Hence there exists a subset A C [n] \ B such that

(1) {a,b} &€ E(G) for all a,b € A with a # b,
(2) for each free vertex ¢ of Hy, one has {d,a} € E(G) for some a € A, and
(3) for each a € A, one has {4,a} € E(G) for some free vertex ¢ of Hj.

In fact, it is obvious that a subset A C [n]\ B satisfying (2) and (3) exists.
If {a,d’'} € E(G), {6,a} € E(G) and {4,a'} € E(G) for some a,a’ € A with
a # da' and for a free vertex § of Hy, then every free vertex &’ of H; with
{¢',d’'} € E(G) must satisfy {0’,a} € E(G). Hence A\ {a’} satisfies (2) and
(3). Repeating this technique yields a subset A C [n] \ B satisfying (1), (2)
and (3), as required.

If s > 1, then H; has a branch. Let wg ¢ H; be a vertex belonging to a
branch of the leaf Hy of A(G|g). Thus {£,wo} € E(G) for all nonfree vertices
& of Hy. We claim that either {a,wo} & E(G) for all a € A, or one has a € A
with {a,£} € E(G) for every nonfree vertices  of Hy. To see why this is true,
if {a,wo} € E(G) and {§,a} € E(G) for some a € A and for some free vertex ¢
of Hy, then one has a cycle (a, d, &, wo) of length four for every nonfree vertex
& of Hy. Since {6,wo} & E(G), one has {a,&} € E(G).

Let X be a minimal vertex cover of G such that X C [n] \ (AU {wo})
(resp. X C [n]\ A) if {a,wo} & E(G) for all a € A (resp. if one has a € A
with {a,{} € E(G) for every nonfree vertices £ of Hy.) Then, for each vertex
~ of Hy, there is w ¢ X with {v,w} € E(G). Hence H; C X, in contrast to
our considerations before. This contradiction guarantees that B = (). Hence
[n] is the disjoint union [n] = |J;~, F;, as required.

Finally suppose that s = 1. Then H; is the only facet of A(G|g). Then X =
U~ (F; \ v;) is a minimal free vertex cover G with H; C X, a contradiction.

(iv)= (iil): Let Fy, ..., F}, denote the facets of A(G) with free vertices and,
for each 1 < ¢ < m, write F; for the set of vertices of F;. Given a minimal
vertex cover X C [n] of G, one has | X N F;| > |F;| — 1 for all ¢ since F} is a
clique of G. If, however, for some i, one has |X N F;| = |F;|, i.e. F; C X, then
X \ {v;} is a vertex cover of G for any free vertex v; of F;. This contradicts
the fact that X is a minimal vertex cover of G. Thus |X N F;| = |F;| — 1 for
all i. Since [n] is the disjoint union [n] = |, F}, it follows that | X|=n—m
and G is unmixed, as desired.

(iii) and (iv)= (i): We know that G is unmixed. Moreover, if v; € F; is a
free vertex, then [n]\{v1, ..., v} is a minimal vertex cover of G. In particular
it follows that dim S/I(G) = m.
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Fori=1,...,m, we set y; = Z er, Tj- We will show that y1,...,y,, is a
regular sequence on S/I(G). This then yields that G is Cohen—Macaulay.

Let F; = {i1,...,ix}, and assume that is41,. .., are the free vertices of
F;. Let G’ C G be the induced subgraph of G on the vertex set [n]\{i1,..., ik}
Then I(G) = (I(G'), Jixi,, Jaxiy, ..., Joxi,, J), where J; = ({x,:{r,i;} €
E(@)}) for j=1,...,¢, and where J = ({z;,.2;,:1 <r < s < k}).

Since [n] is the disjoint union of Fi, ..., Fy, it follows that all generators
of the ideal (I(G’),y1,...,yi—1) belong to K[{x;};cn)\r,]. Thus if we set

R = K[{xl}ZE[n]\Fz]/(I(G1)7y17 s ayi—l)a
then (S/I(G))/(y1,---,¥i—1)(S/I(QG)) is isomorphic to
Rlxiy, ..., )/(Iixiy, ooy Loy, {xi i 01 <1 < s < k}),

where for each j, the ideal I; is the image of J; under the residue class map
onto R. Therefore it follows from Lemma 9.3.2 that the element y; is regular

on (S/I1(G))/(y1, - - -, yi-1)(S/1(G)). 0

Corollary 9.3.3. Let G be a chordal graph, and let Fy,..., F,, be the facets
of A(G) which have a free vertex. Let i; be a free vertex ofF for] =1,...,m,
and let G' be the induced subgraph of G on the vertex set [n] \ {i1,.. zm}
Then

(a) the type of G is the number of mazimal independent subsets of G';
(b) G is Gorenstein if and only if G is a disjoint union of edges.

Proof. (a) Let F C [n] and S = K[x1,...,2,]. If J is the ideal generated by
the set of monomials {z;z;:4,j € Fand¢ < j} and if x = 3, x;, then for
any ¢ € F' one has

(S/J)/(S/T) = 8i/({z;:5 € F,j #i})%,

where Si = K[l‘l, ey Li—1, L1y e - - 73,‘”].
Thus if we factor by a maximal regular sequence as in the proof of Theo-
rem 9.3.1 we obtain a 0-dimensional ring of the form

ieF

A=T/(PE,..., P2, 1(G")).

Here P; = ({zx:k € Fj, k # i;}), G" is the subgraph of G consisting of all
edges Wthh do not belong to any F}, and T' is the polynomial ring over K
in the set of variables X = {z;:k € [n],k‘ #ij forall j =1,...,m}. It is
obvious that A is obtained from the polynomial ring 7' by factoring out the
squares of all variables of T and all x;z; with {7, j} € E(G’). Therefore A has
a K-basis of squarefree monomials corresponding to the independent subsets
of G’, and the socle of A is generated as a K-vector space by the monomials
corresponding to the maximal independent subsets of G’.
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(b) If G is a disjoint union of edges, then I(G) is a complete intersection,
and hence Gorenstein.

Conversely, suppose that G is Gorenstein. Then A is Gorenstein. Since A
is a 0-dimensional ring with monomial relations, A is Gorenstein if and only
if A is a complete intersection, see A.6.5. This is the case only if E(G’) = 0,
in which case G is a disjoint union of edges. O

9.3.2 Chordal graphs are shellable

In this section we present a remarkable extension of the fact that a chordal
graph is Cohen—-Macaulay if and only if it is unmixed, as was shown in The-
orem 9.3.1.

Theorem 9.3.4. Fvery chordal graph is shellable.

Proof. Let G be a chordal graph on [n]. We prove the theorem by induction
on n. First we observe that if each connected component of G is shellable,
then G is shellable. If fact, if A; and As are shellable simplicial complexes on
disjoint sets of vertices, and if Fi,..., F, is a shelling of Ay and Hy,..., H;
is a shelling of Ag, then

FIUH,,....AUH, F,UH,,...,FoUH,,-- F,UH,,...,F.UH,

is a shelling of A;UA,. Thus we may assume that G is connected. Then A(G)
is a quasi-tree (Theorem 9.2.12), say, with leaf order Hy, ..., H,, where m > 1.
Let = be a free vertex of H,,. Then Gy, yung(z,) = Hm- We may assume that
V(Hp) = {z1,...,2,}. By our induction hypothesis, the chordal subgraphs
G; = G\ ({x;} UNg(z;)) (i = 1,...,r) are shellable. Let Fjy,..., F;s, be a
shelling of G; fort=1,...,r.

We have to show that A(G) is shellable. Since Gy, is a complete subgraph

of G, and since H,, has a free vertex, it follows that each facet of A(G)
intersects H,, in exactly one vertex. By using (9.2) it follows that

F11 U {1’1}, ey Flsl U {.’El},Fgl U {(EQ}, .. .7F252 U {1’2}, e
oy Fru{z.}, ... Frs, U{x,}

is the complete list of the facets of A(G). We claim that this is a shelling
order of A(G). Let F' < F be two facets of A(G). Suppose F' = Fy, U {x;}
and F' = Fj; U {z;} where ¢ < j. Notice that F;, U {z1} is an independent
set of G because Fj N H,, = 0. Thus Fj, U {z1} is a face of A(G), hence
FijoU{z1} C Fiy U {1} for some 1 <t < s1. Set F” = Fi; U {z1}. Then
zj € F\F',F\F"={z;} and F"" < F.

If F/ = F;;, U{z;} and F = F;yU{z;}, then the shelling property for these
facets follows from the shellability of the G;. O
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Problems

9.1. Give an example of a finite graph G such that G is isomorphic to G, ie.
G coincides with G after relabelling the vertices of G.

9.2. (a) Find a simplicial complex which cannot be flag.
(b) What is the clique complex of the complete graph on [n]?
(c) What is the clique complex of the cycle on [n] of length n?

9.3. (a) Draw the finite graph G on [2n] with the edge ideal
(x122, T3T 4,y - -« Tp_1Ty).
(b) Draw the finite graph G on [5] with the edge ideal
(122, T123, T1T5, T1T6, TaT3, TaXg, TaLe, L3T4, T3T5).
9.4. Give an example of a Gorenstein graph on [n].

9.5. Find the vertex cover ideal of each of the finite graphs of (a) and (b) of
Problem 9.3.

9.6. Let P = {p1,p2,p3,ps} be the finite poset with p; < p3,p1 < ps and
p2 < ps. Find all poset ideals of P and compute Hp, Ap together with AY,.

9.7. Find an unmixed graph which is not Cohen—Macaulay.
9.8. By using Theorem 9.1.13 classify all Cohen—-Macaulay trees.

9.9. Let G be the bipartite graph obtained from Figure 9.3 by adding the
edge {3, y2}. Is G Cohen—-Macaulay?

9.10. Let G be the chordal graph with the edges

{1,2},{1,3},{1,5},{2,3},{3,4},{3,5},{4,5}, {5, 6}.

(a) Find a perfect elimination ordering of G.

(b) Find a leaf order of the quasi-tree A(G).

(c) Find a relation tree of A(G).

(d) Compute A(G)Y and T ).

(e) Compute the minimal graded free resolution of I(qv.

9.11. (a) Is the chordal graph of Problem 9.10 Cohen—Macaulay?

(b) Find the vertex cover ideal of the chordal graph of Problem 9.10.
1

9.12. Draw all Cohen—Macaulay chordal graphs with at most 5 vertices.
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Notes

An important characterization of chordal graphs which has many applications
was given by Dirac [Dir61] in 1961. The algebraic aspects of Dirac’s theorem
which are summarized in Theorem 9.2.12 appeared in [HHZ04b]. It turned
out that the Hilbert-Burch Theorem [Bur68] plays an important role in this
context. In commutative algebra chordal graphs first appeared in Froberg’s
theorem [Fro90] in which he characterized squarefree monomial ideals with
2-linear resolution.

Villarreal [Vil90] was the first to study edge ideals of a finite graph sys-
tematically. One of the central problems in this theory is to classify all
Cohen—Macaulay finite graphs. Such a classification is given for chordal graphs
[HHZ06] and for bipartite graphs [HHO05]. The results presented here, which
assert that a bipartite graph is sequentially Cohen—-Macaulay if and only it
is shellable, and that each chordal graph is shellable, are due to [VV08]. The
fact that a bipartite graph is Cohen—Macaulay if and only it is pure shellable
has been shown already in [EV97], and that a chordal graph is sequentially
Cohen—Macaulay was first shown in [FT07]. Our characterization of unmixed
bipartite graphs is taken from [HHOO09]. Another characterization of unmixed
bipartite graphs is given in [Vil07].
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Powers of monomial ideals

We collect several topics on powers of monomial ideals, including powers of
monomial ideals with linear resolution as well as depth and normality of pow-
ers of monomial ideals. One of the main results presented in this chapter says
that if a monomial ideal generated in degree 2 has a linear resolution, then
all powers of the ideal have a linear resolution. In order to prove this and
other results some techniques on toric ideals will be required. It is shown that
the depth of the powers of a graded ideal is constant for all high powers of
the ideal. For special classes of monomial ideals we compute their limit depth
explicitly. The limit depth of normally torsionfree squarefree monomial ideals
can be expressed in terms of their analytic spread. It is shown that the facet
ideal of a simplicial complex is normally torsionfree if and only if it is a Men-
gerian simplicial complex. In particular, one obtains the precise limit depth
for bipartite graphs as well as for simplicial forests.

10.1 Toric ideals and Rees algebras

10.1.1 Toric ideals

Since the Grobner basis techniques on toric ideals will be required to develop
the theory of powers of monomial ideals, we quickly discuss fundamental ma-
terials on toric ideals together with typical examples.

A monomial configuration of S = K|[zy,...,2,] is a finite set A =
{u1,...,up} of monomials of S.

The toric ring of A is the subring K[A] = K[u1,...,uy] of S. Let R =
[t1,...,tm] denote the polynomial ring in m variables over K and define the
surjective homomorphism

m: R — K[A]

by setting m(t;) = u; for i = 1,...,m. The toric ideal of A is the kernel of
7. In other words, the toric ideal of A is the defining ideal of the toric ring
K[A]. We write I4 for the toric ideal of A. Every toric ideal is a prime ideal.

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 183
DOI 10.1007/978-0-85729-106-6_10, (©) Springer-Verlag London Limited 2011
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A binomial of R is a polynomial of the form v — v, where v and v are
monomials of R. A binomial ideal is an ideal which is generated by binomi-
als.

Proposition 10.1.1. The toric ideal I 4 of A is spanned by those binomials
u—v of R with m(u) = w(v). In particular 14 is a binomial ideal.

Proof. Let f = cius + --- + ¢;u, be a polynomial belonging to 14, where
u; is a monomial of R with ¢; € K. Suppose that 7m(uy) = -+ = m(ug) and
m(u1) # w(ue) for k < £ < r. The monomials belonging to the toric ring K[.A]
is a K-basis of K[A]. Thus, since w(f) = 0, it follows that ¢; +--- + ¢ = 0.
Hence ¢; = —(¢g + -+ - + ¢x). Thus

crug + -+ ety = e2(ug — ur) + -+ ep(ug — ur),

where 7(u;) = m(uy) for i = 2,...,k. Since f — (cqu1 + -+ + cruy) € 4,
working with induction on r yields the desired result. a

A binomial f = u — v belonging to I 4 is called primitive if there exists
no binomial g = v’ — v’ € I 4, g # f, such that v’ divides u and v’ divides v.
Every primitive binomial is irreducible.

Proposition 10.1.2. A reduced Grébner basis of I 4 consists of primitive bi-
nomaals.

Proof. If f and g are binomials, then their S-polynomial S(f, g) is a binomial.
If f1,...,fs and g are binomials, then every remainder of g with respect
to fi,..., fs is a binomial. Since I4 is generated by binomials, Buchberger
algorithm yields a Grobner basis of I 4 consisting of binomials. It then follows
from the discussion appearing in the first half of the proof of Theorem 2.2.7
that a reduced Grébner basis of I 4 consists of binomials.

Let G denote the reduced Grobner basis of 14 with respect to a monomial
order <. Let f = u—wv be a binomial belonging to G with u its initial monomial
and suppose that g = v’ —v’ € I 4 with f # g is a binomial for which «’ divides
u and v" divides v. Since u belongs to the minimal system of the monomial
generators of in<([4), in the case that u’ is the initial monomial of g one
has © = «'. Thus f = g¢; a contradiction. Thus v’ is the initial monomial of
g. Since v’ divides v, it follows that v belongs to in<(I4). Hence there is a
binomial h = v” —v” € G with u” its initial monomial such that u” divides
v. This is impossible, because G is a reduced Grobner basis. a

Two typical examples of toric ideals arising from combinatorics are now
studied.

Let P = {p1,...,pn} be a finite poset and write K[x,y] for the poly-
nomial ring K[z1,...,%n,91,...,Yn] in 2n variables over a field K. Recall
that we associate each poset ideal a of P with the squarefree monomial

Ug = (Hpiea xi)(HpjeP\a y;) of K[x,y]. Let Ap = {un : @ € J(P)}, where
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J(P) is the set of poset ideals of P, and K[Ap] the toric ring of Ap. Let
K[t] = K[{to : « € J(P)}] denote the polynomial ring in |J(P)| variables
over K and I 4, the toric ideal of Ap. Thus I 4, is the kernel of the surjective
homomorphism 7 : K[t] — K[Ap]| defined by setting 7 (t,) = uo for each
a € J(P). Fix a total order < of the variables of K[t] with the property that
ta < tgif @ C B and write <,ey for the reverse lexicographic order on K|[t]
induced by the ordering <.

Theorem 10.1.3. The reduced Grobner basis of the toric ideal I 4, with re-
spect to <,ey consists of those binomials

tatﬁ - taﬂﬁtocuﬁ
with neither o C 3 nor B C a.

Proof. If a and 3 are poset ideals of P, then each of «N B and a U is a poset
ideal of P. It is clear that the binomial t,tg — tongtaus belongs to I4, and,
in the case of neither o C 8 nor 8 C a, its initial monomial is ¢,tg.
Once we show that the set of those binomials tot3 —tangtaug With neither
o C B nor B C «is a Grobner basis of 14, with respect to <,ey, it follows
immediately that such a set of binomials is the reduced Grobner basis of I 4,
with respect to <jey.
Let G denote the reduced Grébner basis of 4, with respect to <yey. Let
i_1ta; — [Ij=1 s, be a binomial belonging to G with [7_, t,, its initial
monomial. What we must prove is that there are k and ¢ such that one has
neither o C ay nor ay C «g. Suppose on the contrary that oy C as C
- C ag. Then ([],, c,, :)? divides ([T}, ta,). Hence (I, cq, ©:)? must
divide 7(J]_, ¢3,). Hence oy C ; for all 1 < j < q. Since oy # 3; for all
1 < j <gq, it follows that to, <rev tg, for all 1 < j < q. Hence H‘;—:l ta; <rev

9 tg.. This contradicts the fact that []J?_, ¢, is the initial monomial of
=1"6; j=1"%

I ta; — 11— ts;- O

Let G be a finite graph on [n] with no loop and no multiple edge. Let
E(G) ={ex,...,en} denote the set of edges G. For each edge e = {i,j} of G
we associate the quadratic monomial z. = z;x; of S. Let Ag = {z¢,,..., 2., }
and K[Ag] its toric ring. Let K[t] = K[t1, ..., ty] denote the polynomial ring
in m variables over K and I 4, C K[t] the toric ideal of Ag. Thus I 4, is the
kernel of the surjective homomorphism 7 : K[t] — K[Ag] defined by setting
w(t;) = e, fori=1,...,m.

Recall that a walk of G of length ¢ is a subgraph W of G such that
EW) = {{vo,v1}, {v1,v2}, ..., {vg—1,v¢}}, where vg,v1,...,v, are vertices
of G. An even walk is a walk of even length. A walk W with E(W) =
{{vo, v}, ..., {vg—1,v4}} is called closed if vy = v,.

Given an even closed walk W of G with

E(W) = {{’Uo,l}l}, {1}1,112}, ey {’qu_g,vgq_l}, {qu_l, 1}0}} (101)
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of length 2¢, we introduce the binomial

q

q
fW = ];—Ilteizjfl - H teizj
j=

j=1
of K[t], where e;, = {v;_1,v;} for 1 < j < 2¢q and where e;,, = {v2q_1,v0}.
It is clear that the binomial fy belongs to I4.

An even closed walk W’ of G with

E(W’) = {{Uo, ’U,l}, {Ul, Ug}, ey {u2p_2, ng_1}7 {ng_l, uo}}

is called a subwalk of W, where W is an even closed walk (10.1) of G, if, for
each 1 <k < p, there exist 1 < /¢ < qgand 1 < /¢ < q with

{uok—2,usp—1} = {var—2,v20-1}, {uon—1,u2r} = {vorr—1,v20:}.

An even closed walk W of G is called primitive if no even closed walk W' of
G with W # W’ is a subwalk of W.

Every even cycle is a primitive even closed walk. Every primitive even
closed walk of a bipartite graph G is an even cycle.

Lemma 10.1.4. If f € I 4, is a primitive binomial, then there is a primitive
even closed walk W of G with f = fw.

Proof. If the binomial fy arising from an even closed walk W of G is primitive,
then clearly W is a primitive even closed walk of G. Thus what we must prove
is that, for every primitive binomial f of 14, there is an even closed walk W
of G with f = fw.

Let f = [I7_, ti, — [1{—; tj. be a primitive binomial of I4.. Let, say,
m(ti,) = x122. Since w([[7_; t;,) = 7([1{_, tj.), one has w(¢;,,) = xoz, for
some 1 <m < ¢ with r # 1. Say m = 1 and r = 3, i.e. w(t;,) = tat3. Then
7(t;,) = tsts for some 2 < £ < ¢ with s # 2. Repeated application of such
procedure enables us to find an even closed walk W of G such that fy is of
the form fy = f‘(,;r) — f‘s‘;), where f‘svﬂ is a monomial which divides []7_, ¢,
and where fé; ) is a monomial which divides [1%_, t;.. Since f is primitive, it
follows that f = fy, as desired. O

Corollary 10.1.5. A reduced Grobner basis of 14, consists of binomials of
the form fw, where W is a primitive even closed walk of G.

10.1.2 Rees algebras and the z-condition

Let I be a graded ideal of S = Klxy,...,2,] generated by homogeneous
polynomials fi,..., f,, with deg fi = --- = deg f,,. Let t be a variable over
S. The graded subalgebra
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oo

R(I) =PIt = S[fit,..., fnt]

Jj=0

of S[t] is called the Rees algebra of I. We regard R(I) to be a bigraded
algebra with deg(x;) = (1,0) for ¢ = 1,...,n and deg(f;t) = (0,1) for i =
1,....,m.

Let R = Sy1,...,ym] be the polynomial ring over S in the variables
Y1,---,ym and regard R to be a bigraded algebra with deg(z;) = (1,0) for
i=1,...,n and deg(y;) = (0,1) for j = 1,...,m. Then a natural surjective
homomorphism of bigraded K-algebras

p:R—R()

arises by setting ¢(z;) = x; for i =1,...,n and p(y;) = fit for j=1,...,m.
If the bigraded minimal free R-resolution of R(I) is given by

F:0—F,— - — F — Fy,— R(I) — 0,

where F; = @j R(—a;j,—b;;) for i =0, ...,p, then the z-regularity of R(I)
is defined to be the nonnegative integer

reg, (R(I)) = max{a;; — i}.
Proposition 10.1.6. Suppose that I C S is a graded ideal generated in de-
gree d. Then

reg(I*) < kd + reg, (R(I)).

In particular if reg, (R(I)) = 0, then each power of I has a linear resolution.

Proof. The bigraded minimal free R-resolution F of R(I) gives the exact se-
quence

O i (Fp)(*,k) —_— s — (Fl)(*,k) I (FO)(*JC) — R(I)(*)k) — O (102)

of graded S-modules for all k. Since R(I) (. ) = I*(dk) and R(—a, —b) (s ) =
D j—x—p S(—a)y", the exact sequence (10.2) is a (possibly nonminimal)
graded free S-resolution of I*(dk). Thus reg(I*(dk)) < reg, (R(I)) soreg(I¥) <
kd + reg,(R(I)), as desired. O

We say that I satisfies the z-condition if reg, (R(I)) = 0.

Corollary 10.1.7. Let I C S be a graded ideal generated in one degree and
R(I) = R/P. Suppose that there exists a monomial order < on R such that
the defining ideal P of R(I) has a Grobner basis G whose elements are at
most linear in the variables x1,..., &y, t.e. deg, (f) <1 for all f € G. Then
each power of I has a linear resolution.
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Proof. The initial ideal in.(P) is generated by monomials wuy, ..., u,; with
each deg,(u;) < 1. Let T be the Taylor resolution of in.(P); see Section 7.1.
Recall that the module T; has the basis ep with FF = {j; < jo < ... <
Jji} C [m] and that each basis element er has the multidegree (ap,br), where
2P y*r = lem{u;,,...,uj}. Thus deg,(er) < i for all ep € Tj. Since the
shifts of T bound the shifts of a minimal multigraded resolution of in (P), it
follows that reg, (R/in<(P)) = 0. Since reg, (R/P) < reg,(R/in<(P)) (which
is the bigraded version of Theorem 3.3.4(c)), one has reg,(R/P) = 0. O

Together with Corollary 10.1.7 the following result is also useful to show
that a given ideal I has the property that all powers of I have linear resolution.

Corollary 10.1.8. Let I C S be a graded ideal generated in one degree and
R(I) = R/P. Suppose that there exists a monomial order < on R such that
the defining ideal P of R(I) has a Grobner basis G consisting of polynomials
of degree 2. Then each power of I has a linear resolution.

Proof. Let G ={g1,...,9s} be a Grobner basis with deg g; = 2 for all i. Since
the defining ideal of R([I) is bihomogeneous, we may assume that each g; is
bihomogeneous. Suppose u € supp(g;) for some u € S. Then degg, = (2,0),
and it follows that g; € S, which is impossible. Therefore for each u € supp(g;)
we have deg, (u) < 1, as desired. O

In case that I C S be a monomial ideal generated in one degree, there is a
refinement of the xz-condition which guarantees that all powers of I have linear
quotients. As usual, let G(I) be the minimal system of monomial generators
of I. Then the Rees algebra of I is of the form

R(I) = K[J}l, ey Ty, {Ut}uGG(I)] C S[t]

Let S = K[x1,...,%n, {Yu}uec(r)] denote the polynomial ring in n + |G(I)]
variables over K with each degx; = degy, = 1. The toric ideal of R([) is the
kernel Jgry of the surjective homomorphism 7 : R — R([) defined by setting
m(x;) = x; for all 1 <14 <n and 7(y,) = ut for all u € G(I).

The important point in the following discussions is that we will choose a
special monomial order to make sure that we are able to control the linear
quotients of the powers of I.

Let <jex denote the lexicographic order on S induced by z; > o > -+ >

,,. Fix an arbitrary monomial order <# on K[{yu}uec(r)]- We then intro-

duce the new monomial order <i on R defined as follows: For monomials

(It 27" )([ueqr vir) and (It abi Y uecm y2») belonging to R, one has

H H ya“ <lex H i)l H yu
=1 i=1

ueG(I) ueG(I)

if either
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() Muecq) va <# [lucam Yo or
(i) TTueam ver = Tuea vor and [Ty 7" <iex [Tz, 27"

Let G(Jr(r)) denote the reduced Grobner basis of Jz ;) with respect to <ix.

Theorem 10.1.9. Suppose that I satisfies the x-condition with respect to
<ix, Then each power of I has linear quotients.

Proof. Fix k > 1. Each w € G(I*) has a unique expression, called the standard
expression, of the form w = uy - - - ug, with each w; € G(I) such that y,, - - - Yu,
is a standard monomial of R with respect to <#, that is, a monomial which
does not belong to the initial ideal of Jr(5). Let w* denote the standard
monomial ¥y, - Yy, . Let G(IF) = {wy, ..., w,} with wi <# .. <# w.

We claim that I* has linear quotients with the ordering wy, ..., ws of its
generators. Let f be a monomial belonging to the colon ideal (w1, ..., w;j_1) :
wj. Thus fw; = gw; for some i < j and for some monomial g. Let
w; = up---ug and w; = vy -+ v, be the standard expressions of w; and w;.
The binomial fyu, ***Yu, — Yo, - ** Yo, belongs to Jr(r). Since yy, =+ Yo, <#
Yuy * ** Yus, it follows that the initial monomial of fy,, - Yu. — GYuvy - - - Yo, 18
fYu, - Yu. - Hence there is a binomial A+ — k(=) belonging to G(Jr(r)) whose
initial monomial »(+) divides fyu, - - - Yu.. Since yu, - - - Yu, is a standard mono-
mial with respect to <# it follows from the definition of the monomial order
<ix that it remains to be a standard monomial with respect to <f§x. Hence
the initial monomial of none of the binomials belonging to G(Jz (1)) can divide
Yu, - - Yu,- As a consequence, the initial monomial h{H) must be divided by
some variable, say, x,. Since h(*) is at most linear in the variables x1, ..., x,,
one has h(t) = TaYuy, * Yup, then z, divides f and where Yuy, " Yuy, di-
vides yu, - Yu.. Let A7) = TbYuvg, * " Yug, » WheTe Yy, - Yy, <# Yup, ** Yuy, -
One has z,up, - - up,

To complete our proof, we show that z, € (wi,...,w;j—1) : w;. Since
Yup, =" Yuy, divides yu, - - Yu,, one has yy, -+ yu, = Yupy " Yup, Yup, " Yuy,, -

Since Yy, * Yo, <# Yup, * " Yu,, , it follows that

= TpVg, - * " Vg, -

*

Yog, "'yvqtyupt+1 © Yuyp, <# Yuy = Yuy = Wy -

_ k _ . .
Let wi, = vg, ** Vg, Up,,, -+~ Up, € G(I*). Then zqw; = zyw;,. Since w}, <#
Yogr =" Yogu Yup,,, " Yupy » ONE has wj, <# w}. Hence ig < j. Thus z, €
(wi,...,wj—1) : w;, as desired. O

10.2 Powers of monomial ideals with linear resolution

We consider classes of monomial ideals for which all of its powers have a linear
resolution.
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10.2.1 Monomial ideals with 2-linear resolution
We begin with

Lemma 10.2.1. Let I C S be a squarefree monomial ideal with 2-linear reso-
lution. Then, after suitable renumbering of the variables, one has the following
property: if x;x; € I with i # j, k > i and k > j, then either x;x) or x;Ty
belongs to I.

Proof. Let G be the finite graph on [n] with I = I(G). Since I has a linear res-
olution, the complementary graph G is a chordal graph, see Theorem 9.2.3. Let
A be the quasi-forest on [n] whose 1-skeleton coincides with G, see Section 9.2.
Let Fy,..., F,, be a leaf order of A. Let 7; be the number of free vertices of
the leaf F;,,. We label the free vertices of F,,, by n,n—1,...,n—i; + 1. Thus
(F1,...,Fyn_1)is a quasi-forest on [n—i1] and F,,,_q isaleaf of (Fy,..., Fr_1).
Let i9 be the number of free vertices of the leaf F,,_1. We label the free ver-
tices of F,,_1 by by n —i1,...,n — (i1 + i2) + 1. Proceeding in this way we
label all the vertices of A, that is, those of G, and then choose the numbering
of the variables of S according to this labelling.

Suppose there exist x;x; € I and k > 14, j such that z;z, ¢ I and xjz, & 1.
Let r be the smallest number such that I' = (F7,..., F,) contains the vertices
1,...,k. Then k is a free vertex of F;. in I'. Since x;x; ¢ I and x;x) & 1, it
follows that {i,k} and {7, k} must be edges of I'. Since k is a free vertex of
F, in I' it follows that ¢ and j must be vertices of F,.. Hence {3, j} is an edge
of F,. Thus {7,} is an edge of G. In other words, {i,j} cannot be an edge of
G. However, this contradicts the assumption that z;z; € I. a

Lemma 10.2.2. Let I be a monomial ideal generated in degree 2 and J C I
the ideal generated by all squarefree monomials belonging to I. Suppose that
I has a linear resolution. Then J has a linear resolution.

Proof. Let {ac?N. .. ,x?k} =1In{a?,...,22}. Then I = (33121,. .. ,ac%c, J). Recall
from Subsection 1.6 that the polarization of I is the squarefree ideal I* =
(Tiy Y155 Tiy Uiy, J) of K21, ., Tnyy1,-- -, Yk]. We regard I* to be the edge
ideal of the finite graph G* with the vertices —k,...,—1,1,...,n, where the
vertices —j correspond to the variables y; and the vertices i to the variables
z;. Let G be the restriction of G* to {1,...,n}. In other words, {i,j} with
1 <i<j<nisan edge of G if and only if it is an edge of G*. It is clear that
J is the edge ideal of G.

Since I has a linear resolution, Corollary 1.6.3 guarantees that I* has a
linear resolution. Hence G* is chordal. Obviously the restriction of a chordal
graph to a subset of the vertices is again chordal. Hence G is chordal and J
has a linear resolution, as desired. O

Lemma 10.2.3. Work with the situation as in the proof of Lemma 10.2.2.
Let A be the quasi-forest whose 1-skeleton coincides with G. Then
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(a) the vertex i, is a free vertex of A forj=1,...,k;
(b) no two of these vertices i1, ..., i, belong to the same facet of A.

Proof. Let A* be the quasi-forest whose 1-skeleton is G*.

(a) Suppose that i; is not a free vertex of A. Then there exist edges
{i;,r} and {ij, s} of G such that {r,s} is not an edge of G. Then {i;,r}
and {i;,s} are also edges of G*, and {r,s} is not an edge of G*. Since
xi,y; € I*, it follows that {ij, —j} is not an edge in G*. Since z,y; and
z5y; do not belong to I*, it follows that {—j,r} and {—j, s} are edges of G*.
Thus {i;,r},{r, 5}, {—7, s}, {s,i;} is a cycle of G* of length 4 with no chord;
a contradiction.

(b) Suppose that i; and i, are free vertices belonging to the same facet of
A. Then {ij,i¢} is an edge of G*. Since xi;ye, Ti,y; and y;ye do not belong
to I*, it follows that {i;, —¢}, {ir, —j} and {—j, —¢} are egdes of G*. On the
other hand, since z;,y; and x;y, belong to I*, it follows that {i;, —j} and
{i;, €} are not edges of G*. Hence {i;,i¢},{ie,—j},{—4,—¢}, {4, i;} is a
cycle of length 4 with no chord; a contradiction. O

Corollary 10.2.4. Let I be a monomial ideal of S generated in degree 2. Sup-
pose that I has a linear resolution and that x? € I. Then with the numbering
of the variables as given in Lemma 10.2.1 one has the following property: for
all j > i for which there exists k such that xyx; € I, one has x;x; € I or
x;x € 1.

Proof. Suppose z? € I and there exists j > i for which there exists k such
that xpz; € I, but neither x;x; nor x;x; belongs to I. Since xf € I, one has
k # 1.

Let k # j. Then {k,j} is not an edge of A, where A is the quasi-forest as
defined in the proof of Lemma 10.2.1. Since both {7, j} and {i, k} are edges of
A, it follows that ¢ cannot be a free vertex of A, contradicting Lemma 10.2.3.

Let k£ = j. Then x? € I and j is a free vertex of A by Lemma 10.2.3. Since
x;x; € I, the edge {7, 5} belongs to A. Hence both i and j belong to the same
facet, contradicting Lemma 10.2.3. O

10.2.2 Powers of monomial ideals with 2-linear resolution

Recall from Lemma 10.2.1 and Corollary 10.2.4 that if I is a monomial ideal
of S generated in degree 2 which has a linear resolution then I satisfies the
conditions (x) and (xx) listed in the following

Theorem 10.2.5. Let I C S = K[x1,...,2,] be an ideal which is generated
by quadratic monomials and suppose that I possesses the following properties

(%) and (*x):

() if xix; € T withi # j, k > i and k > j, then either x;x) or x;xy, belongs
to I;
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(xx) if 22 € I and j > i for which there is k such that xxz; € I, then either
vy €1 or xywp €1

Let R(I) = R/P be the Rees algebra of I. Then there exists a lexicographic
order <jex on R such that the reduced Grobner basis G of the defining ideal P
with respect to <jex consists of binomials f € R with deg, (f) < 1.

Proof. Let {2 denote the finite graph with the vertices 1,...,n,n + 1 whose
edge set E(f2) consists of those edges and loops {i,j}, 1 <i < j < n, with
z;x; € I together with the edges {1,n+1},{2,n+1},...,{n,n+1}.

Let K[f2] denote the subring of S[z,+1] generated by those quadratic
monomials x;z;, 1 < i < j < n+ 1, with {i,j} € E(). Let R =

Klzy,...,2n,{y{i 3} 1<i<n.1<j<n] be the polynomial ring and define the sur-
{iJ}eE(2)
jective homomorphism 7 : R — KJ[{2] by setting n(z;) = zizn41 and

m(Ygi;3) = ix;. Since the Rees algebra R(I) of I is isomorphic to K[f2]
in the obvious way, we will identify the defining ideal P of the Rees algebra
with the kernel of 7.

We introduce the lexicographic order <jox on R induced by the ordering
of the variables as follows: (i) y(; ;3 > Y(p,qy if either min{7, j} < min{p, ¢}
or (min{i, j} = min{p, ¢} and max{i,j} < max{p,q}) and (ii) yg ;3 > v1 >
Ty > -+ >z for all yg; jy. Let G denote the reduced Grobner basis of P with
respect to <pex.

It follows from Corollary 10.1.5 that the reduced Grobner basis G consists
of binomials of the form fr, where I" is a primitive even closed walk of (2.

Now, let f be a binomial belonging to G and

I' = ({wy, w2}, {wa,ws}, ..., {wam,w1})

the primitive even closed walk of {2 associated with f. In other words, with
setting yy; 41} = T; and wamq1 = w1, one has

m m
f=/r= H Y{war—1,war} — H Y{war wan i1}
k=1 k=1

What we must prove is that, among the vertices wy,ws, ..., Wy, the vertex
n+1 appears at most one time. Let y(,,, .,,} be the biggest variable appearing
in f with respect to <jex with wy; < ws. Let ki, ko, ... with ky < kg < ---
denote the integers 3 < k < 2m for which wy =n + 1.

Case I: Let ky be even. Since {n + 1,w;} € E(£2), the closed walk

I'" = ({wy,wa}, {wa, w3}, ..., {wp,—1, wg, }, {wp, , w1 })

is an even closed walk in {2 with deg,(fr) = 1. Since the initial monomial
in<1ex (fF’) = y{wl,wg}y{wg,w4} o 'y{wkl,l,wkl} of f[" divides in<lex (fF) =
[Ty Yfwsn_ 1w} it follows that fr & G unless I =TI
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Case II: Let both k; and k2 be odd. This is impossible since I' is primitive
and since the subwalk

F,/ = ({w17w2}7 sy {wklflvwkl}v {wkza wk2+1}7 ceey {mevwl})
of I' is an even closed walk in 2.

Case III: Let k1 be odd and let ks be even. Let C be the odd closed walk

C= ({wklawkl-‘rl}v {wk1+lvwk1+2}7 ceey {wkz—lvwk'z})

in 2. Since both {wq, wy, } and {wg,,w,} are edges of {2, the closed walk

"= ({w17w2}7 {wQ’wlﬁ}vC? {wkwwl})

is an even closed walk in {2 and the initial monomial in<,_ (fr~) of frm
divides in<, (fr). Thus we discuss I instead of I".

Since I is primitive and since C is of odd length, it follows that none of
the vertices of C' coincides with w; and that none of the vertices of C coincides
with ws.

(ITI — a) First, we study the case when there is p > 0 with k1 +p+2 < ko
such that wg, {p1 7 Wi, +pt2. Let W and W’ be the walks

W = ({why, Wey 155 {Why 415 Why 2} -+ 5 {Why pt1, Why 4 pr2})s
W' = ({wry, Wy -1} {Why 15 Why—2}, - -+ 5 {Why 4 p135 Why1pr2})

in (2.

(IIT — a — 1) Let wy # wo. If either {wo, wy, yp+1} or {wa, Wi, 1p12} is an
edge of £2, then it is possible to construct an even closed walk I'f in £2 such
that in<_ (fr:) divides in<,_ (fr~) and deg,(frt) = 1. For example, if, say,
{wa, Wk, +p+2} € E(£2) and if p is even, then

Fﬂ - ({w27w1}7 {wlawk2}7W,7 {wk1+p+27w2})

is a desired even closed walk.

(IIT — a — 2) Let wy # wo. We assume that neither {wa, wg, +p+1} nor
{wa, Wk, +p4+2} is an edge of 2. Since {wg, 4p+1, Wk, +p+2} i an edge of (2,
it follows from (%) that either ws < wg,4p+1 OF Wo < Wy, 4pt2. Let, say,
Wy < Wk, +pt2. Since wy < we and {w1, w2} € E(£2), again by () one has
{w1, Wiy 4p42} € E(£2). If p is even, then consider the even closed walk

Fb = ({wlv U}Q}v {w27 wk2}7 le {wk1+p+2’ wl})

in 2. If p is odd, then consider the even closed walk

Fb = ({wla w2}7 {va wkl}a VV, {wk1+p+2a wl})
in 2. In each case, one has deg,(fr») = 1. Since Y{w, wa} > Yfuw, it

. Wk +p+2})
follows that in<, (fr») divides in<, (frm).
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(IIT — a — 3) Let wy; = wq. Since w1 < Wk, 4p+1, it follows from (xx)
that either {w1, wg,1p+1} € E(£2) or {w1, Wi, +p+2} € E(£2). Thus the same
technique as in (III — a — 2) can be applied.

(III - b) Second, if C = {n+1,5},{J,4}, {4,n + 1}), then in each of the
cases w) < wg < J, w1 < j < wg and wy = wy < j, by either (x) or (xx), one
has either {wy,j} € E(£2) or {we,j} € E(£2). O

As the final conclusion of the present section we obtain

Theorem 10.2.6. Let I be a monomial ideal of S generated in degree 2. Then
the following conditions are equivalent:

(a) I has a linear resolution;
(b) I has linear quotients;
(¢) Each power of I has a linear resolution.

Proof. First of all, (¢) = (a) is trivial, and (b) = (a) is guaranteed by Propo-
sition 8.2.1. We will show that (a) = (c) and (a) = (b).

(a) = (c): If T has a linear resolution, then it follows from Proposi-
tion 10.2.1 and Corollary 10.2.4 that, after a suitable renumbering of the
variables, the conditions (%) and (xx) of Theorem 10.2.5 are satisfied. Hence
Corollary 10.1.7 guarantees that each power of I has a linear resolution.

(a) = (b): Again we may assume that the conditions (x) and (xx) are
satisfied. We show that the following condition (q) is satisfied: the elements
of G(I) can be ordered such that if u,v € G(I) with v > v, then there
exists w > v such that w/ ged(w,v) is of degree 1 and w/ ged(w,v) divides
u/ ged(u, v). This condition (q) guarantees that I has linear quotients.

The squarefree monomials belonging to G(I) will be ordered by the lexi-
cographical order induced by z,, > z,—1 > -+ > x1, and if 27 € G(I) then
we let u > 22 > v, where u is the smallest squarefree monomial of the form
rrx; with k < ¢ and where v is the largest squarefree monomial less than u.

Now, for any two monomials v and v belonging to G(I) with u > v, we
must show that property (q) is satisfied. There are three cases:

Case 1: u = z,2¢ and v = x;2; both are squarefree monomials with s < ¢
and ¢ < j. Since u > v, we have t > j. If t = j, take w = u. If ¢t > j, then by
(%), either z;x, € G(I) or z;x, € G(I). Accordingly, let w = x;z; or w = x ;.

Case 2: u = x7 and v = z;x; with i < j. Since u > v, we have t > j.
Hence by (x), either z;2; € G(I) or zjz; € G(I). Accordingly, let w = x;z;
or W= ;.

Case 3: u = z,x; with s <t and v = xf If t =4, then s # t and take
w = u. If t > i, then by (xx), we have either x,2; € G(I) or z;z5 € G(I). Both
elements are greater than v. Accordingly, let w = z;x; or w = z;x5. Then
again (q) holds. O

Ezample 10.2.7. (a) (Sturmfels) The monomial ideal
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I = (def,cef,cdf,cde,bef,bed, acf, ade)

of Kla,b,c,d, e, f] has linear quotients. However, I? does not have a linear
resolution.

(b) (Conca) The ideal
I = (a?, ab,ac,ad,b* ae + bd, d?)

of K[a,b,c,d, e] has a linear resolution (even linear quotients with respect to
the generators in the given order), but, at least in characteristic 0, the ideal
I? does not have a linear resolution.

10.2.3 Powers of vertex cover ideals of Cohen—Macaulay bipartite
graphs

One of the typical examples of monomial ideals for which Theorem 10.1.9 can
be applied is the vertex cover ideal of a Cohen—-Macaulay bipartite graph. Let
G be a Cohen—Macaulay bipartite graph. We have seen in Theorem 9.1.13
that G = Gp for some finite poset P = {p1,...,pn}, and that the vertex
cover ideal Ig of G is equal the squarefree monomial ideal Hp, which is the
ideal associated to the poset ideals of P. Hence in what follows we will discuss
the powers of Hp.
Let
Kix,y]|=K[z1,...,Zn, Y1, -, Yn]

be the polynomial ring in 2n variables over a field K. The ideal Hp is generated
by the monomials uq = ([],,c, xi)(Hpjep\a y;) of K[x,y] with o € J(P).
Let J the defining ideal of R(Hp). In other words,

R(HP) = K[X7Y7 {Uat}aeJ(P)] C K[X7 Yy, t]

and J is the kernel of the canonical surjective K-algebra homomorphism
¢: K[x,y,z] — R(Hp), where

K[X, Yy, Z] = K[X7 Y, {ZOL}OAGJ(P)]

is the polynomial ring over K and where ¢ is defined by setting ¢(x;) = z;,
¢(yj) = y; and p(za) = uat.

Let <jex denote the lexicographic order on K[x,y] induced by the ordering
1> > Xy > Y1 > - > Y, and <! the reverse lexicographic order on
K[{za}aeg(p)] induced by an ordering of the variables z, satisfying z, > 23
if 8 C ain J(P). Finally let <fex be the monomial order on KIx,y,z], as
defined before Theorem 10.1.9.

Theorem 10.2.8. The reduced Grobner basis Q<? (J) of the defining ideal

J C K[x,y,z| with respect to the monomial order <§6x consists of quadratic

binomials whose initial monomials are squarefree. In particular, Hp satisfies
the x-condition with respect to <§ez.



196 10 Powers of monomial ideals

Proof. The reduced Grébner basis of J N K[{za}aecs(p)] With respect to the
reverse lexicographic order <* coincides with g<? (NNK[{zatacs(p)]- The-
orem 10.1.3 guarantees that g<§CX(J) N K[{Za}aee;(p)] consists of those bino-
mials 2423 — ZangZaug With neither a C 8 nor 5 C a.

It follows from Proposition 10.1.2 that the reduced Groébner basis of J
consists of primitive binomials of K[x,y,z]. Let

n n
b bl
f=q120 ) o 2a,) = (L2097 (o - 200)
=1 =1

be a primitive binomial of K[x,y,z| belonging to Q<? (J) with

n
i, bi
(ng Y; ) (Zay "'Zaq)
=1

its initial monomial, where oy < --- < g and o} <--- < a;.

Let f & K[{za}acs(p)], and let j denote an integer for which o) ¢ a;.
Such an integer exists. In fact, if o, C «; for all j, then each a; = 0 and
each b; = 0. This is impossible since ([T, 2% 4")(2a, -+ Zq,) is the initial
monomial of f.

Let p; € o\ a;;. Then p; belongs to each of o}, a4, ..., ag, and does not
belong to each of a1, aq,...,a;. Hence a; > 0.

Let p;, € P with p;, € o} \ a; such that a; U {p;,} € J(P).

Thus a;, > 0. Let 8 = a; U {p;, }. Then the binomial g = x; ua, — yi,us
belongs to J with ;,ue; its initial monomial. Since x;,u,; divides the initial
monomial of f, it follows that the initial monomial of f coincides with z;,uq,
as desired. O

In view of Theorem 10.1.9 the preceding theorem yields
Corollary 10.2.9. Let G be a Cohen—Macaulay bipartite graph. Then all pow-
ers of the vertex cover ideal I of G have linear quotients.
10.2.4 Powers of vertex cover ideals of Cohen—Macaulay chordal
graphs
In a similar way to bipartite graphs one has

Theorem 10.2.10. Let G be a Cohen—Macaulay chordal graph. Then all pow-
ers of I have a linear resolution.

Let G be a chordal graph on [n]. In Theorem 9.3.1 we have seen that G
is Cohen—Macaulay, if and only if [n] is the disjoint union of those facets of
A(G) with a free vertex. Thus Theorem 10.2.10 follows from
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Theorem 10.2.11. Let G be a graph on [n], and suppose that [n] is the dis-
joint union of those facets of the clique complex of G with a free vertex. Then
all powers of I have a linear resolution.

Proof. Let Fy,...,F,, be the facets of A(G) which have a free vertex. Since
[n] = Ft UF,U---UF; is a disjoint union, we may assume that if i € F),
j € Fyand p < g, then ¢ < j. In particular, 1 € Fy and n € F,. Moreover,
we may assume that if 41,72 € F; where ¢; is a nonfree vertex and is is a free
vertex, then i1 < is.

Observe that any minimal vertex cover of G is of the following form:

(Fi\{a1}) U (Fo\{a2})U---U(Fs\ {as}), where a; € Fj.

In particular, G is unmixed and all generators of I have degree n — s.

Now let R(Ig) be the Rees algebra of vertex cover ideal of G. Suppose
U1, - .., Uy, is the minimal set of monomial generators of I. Then there is a
surjective K-algebra homomorphism

Klzi,...,%n,y1,..,Ym] — R(Ig) z;—z; and y; — uj,

whose kernel J is a binomial ideal. Let < be the lexicographic order induced
by the ordering z1 > 29 > --- > x, > y1 > -+ > y,,. We are going to show
that I satisfies the z-condition with respect to this monomial order. Suppose
that @i, x4, < - i, ¥j,Yj, -+ Y5, With i3 <ig < ... < iy is a minimal generator
of in.(J). Then

TiyTiy Ty Yja Yjo ** Yig — ThaThy *  ThpYa Yt Yty € J. (10.3)

It follows that ¢ < min{ki,...,k,}, and there exists an index j, such that z;,
does not divide uj,. Say, i1 € F.. Then (10.3) implies that there exists d € [p]
with kg € F.. In particular, iy # max{i: i € Fy}. Let ig = max{i: i € Fy}.
Since g is a free vertex, it follows that x;, (u;, /x;,) is a minimal generator
of I, say, uy. Therefore, f = z;,y;, — Tiyyg € J and in(f) = z;,y;, divides
Tiy Tiy ** Ti,Yj1 Yja ** Yjy» s desired. O

10.3 Depth and normality of powers of monomial ideals

10.3.1 The limit depth of a graded ideal

What can be said about the numerical function f(k) = depth S/I* for a
graded ideal I C S = K|[xz1,...,2,] and k > 07 We first show

Proposition 10.3.1. Let I C S be a graded ideal. Then depth S/I* is con-
stant for all k > 0.
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Proof. We will show that depth I* is constant for & > 0. This will yield the
desired conclusion. In order to show this we consider the Koszul homology
H(x;R(I)) of the Rees algebra R(I) of I with respect to x = 1,...,%,.
Each H;(x;R(I)) is a finitely generated graded S-module with homogeneous
components

H;(x;R(I))y = H;(x; I%). (10.4)
Corollary A.4.2 implies that
depth I* = n — max{i: H;(x;I*) # 0}. (10.5)

Now, according to (10.4), we have H;(x; Ik) # 0 for all k£ > 0, if and only if
the Krull dimension of H;(x; I¥) is not zero. From this it follows that

depth I* = n — max{i: dim H;(x; R(I)) >0} forall k>>0. (10.6)
O

Let m = (x1,...,z,) be the graded maximal of S. The K-algebra
R(I) = R(I)/mR(I) is a called the fibre ring, and its Krull dimension the
analytic spread of I. This invariant is a measure for the growth of the num-
ber of generators of the powers of I. Indeed, for k > 0, the Hilbert function
H(R(I),k) = dimg I* /mI*, which counts the number of generators of the
powers of I, is a polynomial function of degree ¢(I) — 1; see Theorem 6.1.3.

As we have seen before, the limit of the numerical function depth S/I*
exists. The next result gives an upper bound for this limit.

Proposition 10.3.2. Let I C S be a nonzero graded ideal. Then
lim depth S/I* <n — £(I).
k—o0

Equality holds if R(I) is Cohen—Macaulay.

Proof. Let r > 0 be any integer. Then limy ... S/I*" = limj_., S/I* and
((I") = £(I). Moreover, R(I") = R(I)") which is the rth Veronese subalgebra
of R(I). It is know that if R(I) is Cohen-Macaulay, then R(I)(") is Cohen—
Macaulay as well. Thus in the proof of the proposition we may replace I by
I" for any r > 0.

Let ¢ = max{i: dim H;(x;R(I)) > 0}. Then there exists an integer ko
such that H;(x;R(I))r = 0 for all i > ¢ and all k¥ > ko. Thus, if we choose
some r > ko, then H;(x; R(I")) = 0 for all i > ¢, while dim H;(x; R(I")) > 0
for i < c. Replacing I by I" we may as well assume that H;(x; R(I)) = 0 for
i > c. Therefore, (10.6) and [BH98, Theorem 1.6.17] imply that

hm depth S/T%F = hm depth I* — 1 = n — grade(m, R(I)) — 1. (10.7)
By the graded version of [BH98, Theorem 2.1.2] one has grade(m, R(I))) =

dim R(I) — dim R(I), with equality if and only if R(I) is Cohen-Macaulay.
Hence, observing that dimR(I) = n + 1, the desired conclusion follows. O
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Ezample 10.3.3. The function f(k) = depth S/I* may not be monotonic. Con-
sider for example the monomial ideal
I = (a%a’b,ab’, 1%, a*bc, abd, a*e® f3,b%e3 f2)
in S = Kla,b,c,d, e, f]. Then depth S/I = 0, depth S/I? = 1, depth S/I? = 0,
depth S/I* = 2 and depth S/I° = 2.
However, one has

Proposition 10.3.4. Let I be a graded ideal all of whose powers have a linear
resolution. Then depth S/I* is a nonincreasing function of k.

The proposition is a consequence of Corollary 10.3.5 stated below. We call
the least degree of a homogeneous generator of a graded S-module M, the
initial degree of M.

Lemma 10.3.5. Let J C I be graded ideals, and let d be the initial degree
of I. Then

Bi,i+a(J) < Bijivall)
for all .

Proof. The short exact sequence
0—J—I—1I/]J—0
yields the long exact sequence
-« — Tory 1 (K, 1/J)iy14(a—1) — Tori(K,J)iya — Tory(K,I)itq — ---

Since the initial degree of I/J is greater than or equal to d, it follows
that Tor;y1(K,1/J)it14(a—1) = 0. Hence Tor;(K, J)ira — Tori(K,I)iyq is
injective. a

10.3.2 The depth of powers of certain classes of monomial ideals

In this subsection we study the function f(k) = depth S/I* for special classes
of monomial ideals. We consider the case that I is generated in a single degree
and that I has linear quotients. Say I is minimally generated by fi,..., fm
and that the colon ideal Ly = (f1,..., fk—1) : fx is generated by 7\ elements.
Then according to Corollary 8.2.2 one has projdim(I) = max{ry,r2,...,rn},
so that by the Auslander—-Buchsbaum formula,

depthS/I =n—r(I) —1 where r(I)=max{ry,ro,...,m}. (10.8)
Fix positive integers d and eq,...,e, with 1 <e; <---<e¢, < d. As a
first application of (10.8) we consider the ideal of Veronese type
I(d§elv-<~7en)

of S indexed by d and (ey,...,e,) which is generated by those monomials
u=a{' -z of S of degree d with a; < e; for each 1 <4 < n. This class of

ideals is a special class of polymatroidal ideals, introduced in Chapter 12.
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Theorem 10.3.6. Let t =d+n—1—-3" e;. Then depth S/I(ge, .. c,) =t

Proof. Let ug = :c?—l .. ~fo":1171fo" and u = Tp_Tp_ty1 - Tn_1ug € G(I).
Let J = {w € G(I) : u <yey w}). For each 1 < i < n —1¢— 1, one has
xu/xy, € G(I) with u <;ey xju/z,. Hence x; € J:uforall 1 <i<n-—t—1.
Moreover, one has z;u/z;, ¢ G(I) for all n —t < j < n and for all jy # j.
Hence z; ¢ J:uforalln —t <j <mn. Thus J : u = (x1,...,2p—4—1). On the
other hand, for each v = 27" - - - 2% € G(I) with m(u) = max{i : a; # 0}, the
number of i < m(v) with a; < e; is at most n — ¢t — 1. Thus the number of
variables required to generate the colon ideal ({w € G(I) : v <pov w}) : v is

at most n — ¢ — 1. Hence r(I) =n —t — 1. Thus depth S/I =t. O
The squarefree Veronese ideal of degree d in the variables x;,,...,z;,
is the ideal of S which is generated by all squarefree monomials in x;,, ..., z;,

of degree d. A squarefree Veronese ideal is matroidal and Cohen—Macaulay;
see Corollary 12.6.5 and Theorem 12.6.7.

Let 2 < d < n and I = I, 4 be the squarefree Veronese ideal of degree d in
the variables 1, ..., x,. Since for each k, the ideal I* is the ideal of Veronese
type indexed by kd and (k, k, ..., k), Theorem 10.3.6 implies

Corollary 10.3.7. Let 2 < d < n. Then

depth S/I,’;d =max{0,n—k(n—d)—1}.

Let P = {p1,...,pn} be a finite poset. As a second application of formula
(10.8) we study the powers of the ideal Hp introduced in Subsection 12.6.5.

Theorem 10.3.8. Fach power HIIZ. has linear quotients.

Proof. If a and (8 are poset ideals of P, then both N G and o U § are poset
ideals of P with uqug = uanpuaup. This fact guarantees that each monomial
belonging to G(HIIE) possesses an expression of the form u,, uq, - - Uq,, , Where
each o is a poset ideal of P, with a; C ag C --- C . We claim that such
an expression is unique. In fact, suppose that uqs, ug, - - - Uq, coincides with
ug, ug, - - - Ug,,, where each 3; is a poset ideal of P, with 8; C 82 C --- C S
Let 1 < £ < k be the smallest integer for which oy # 5¢. Let p; € ay \ Be.
Then Uy, Ua, - - - Ua,, 18 divided by ¥~ However, ug, ug, - - - ug, cannot be
divided by z¥~“T'. This contradiction says that a; = (; for all 1 < j < k.
Thus such an expression is unique, as desired.

We fix an ordering < of the monomials u,, where « is a poset ideal of
P, with the property that one has u, < ug if 3 C a. We then introduce the
lexicographic order <jex of the monomials belonging to G(H%) induced by the
ordering < of the monomials u,. We claim that H 1’3 has linear quotients. More
precisely, we show that, for each monomial w = Ug, U, -+ Ua, € G(HE), the
colon ideal ({v € G(HE) : w <jex v}) : w is generated by those variables y;
for which there is 1 < j < k with p; € «; such that «; \ {p;} is a poset ideal
of P.
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First, let y; be a variable with p; € a; and suppose that § = «a; \ {p;} is
a poset ideal of P. One has y;u,; = r;ug. Hence

YW = TilUay ** Ua;_ UGUag,, ** Uy,

Since each of the poset ideals o, ..., ;-1 and 3 is a subset of «;, it then fol-
lows that the monomial ue, - - uq,_, ug can be expressed uniquely in the form
Uy Vol Ug such that of C -+ C 043»71 - oz;» C «;. Moreover, one has

Uey " Ua; U <ex Ug) « - uagilua;. Thus w <jex Ugf - uagilua}uajﬂ Uy
Hence y; belongs to the colon ideal ({v € G(HE) : w <jex v}) 1 w
Second, let 4 be a monomial belonging to the colon ideal

({v e GHE) : w <pep v}) : w

/X

Thus one has dw = ;w for monomials p and v with w <jex v. Say, v

Ugf Ut with o) C --- C o). What we must prove is that the monomial (5
is divided by a variable y; for which there is 1 < j < k such that «; \ {p;}
is a poset ideal of P. Since w <jex v, it follows that there is jo for which
aj, < aj . In particular aj, ¢ o . Thus there is a maximal element p;, of a;,
with p;, & 04;0. Then p;, belongs to each of the poset ideals o, ®jo+1,- - -, Ik
and belongs to none of the poset ideals o, . .. ,043»0. Hence the power of y;, in
the monomial v is at least jy, but that in w is at most jo — 1. Hence 3¢ must
divide 4. Since p;, is a maximal element of «;,, the subset a;, \ {p;, } of P is
a poset ideal of P, as desired. |

By using Theorem 10.3.8 we can now compute depth S/Hll‘% in terms of the
combinatorics on P. Recall that an antichain of P is a subset A C P any two
of whose elements are incomparable in P. Given an antichain A of P, we write
(A) for the poset ideal of P generated by A, which consists of those elements
p € P such that there is a € A with p < a. For each k = 1,2,..., we write
0(P; k) for the largest integer N for which there is a sequence (A1, Ay, ..., A4;)
of antichains of P with r < k such that

(1) AlﬂAJ :Q)lfl#],
(ii) (A1) C (A2) C -+ C (Ay);
(iii) N = [A1] 4 |Ag + -+ |A].
We call such a sequence of antichains a k-acceptable sequence.

It follows from the definition that 6(P;1) is the maximal cardinality of
antichains of P and 6(P;1) < §(P;2) < -+ < 6(P;rank(P) + 1). Moreover,
0(P;k) = n for all k > rank(P) + 1. Here rank(P) is the rank of P, that is,
rank(P) + 1 is the maximal cardinality of chains contained in P. A chain is
a totally ordered subset of P.

Corollary 10.3.9. Let P be an arbitrary finite poset with |P| = n. Then
depth S/HY = 2n — §(P; k) —
forall k > 1.
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Proof. We work with the same notation as in the proof of Theorem 10.3.8.
Recall that, for a monomial w = g, Ua, -+ Ua, € G(HE), the colon ideal
({v € G(HE) : w <jer v}) : w is generated by those variables y; for which
there is 1 < j < k with p; € a; such that o \ {p;} is a poset ideal of P. Note
that o \ {p;} is a poset ideal of P if and only if p; is a maximal element of
a;. Let B; denote the set of maximal elements of o;. Then the number of
variables required to generate the colon ideal ({v € G(HE) : w <jep v}) 1 w
is |Uf:1 Bj|. Let Qu = U?:l B;. One has r = rank(Q.,) + 1 < k. We then
define a sequence Ai, As,..., A, of subset of B,, as follows: A; is the set
of minimal elements of @, and, for 2 < 57 < r, A; is the set of minimal
element of Qy \ (A1 U---U Aj_1). Then (44,...,4,) is k-acceptable with
1Qul = Sy 4], Hence [Qu] < 3(P; ).

On the other hand, there is a k-acceptable sequence (A1, As, ..., A;) with
O0(P; k) = 22:1 |A;|. Let w = uSiTuMl) ++-u(a,y € G(H}). Then the number
of variables required to generate the colon ideal ({v € G(HE) : w <je v}) : w
is 6(P; k).

Consequently, one has r(HJ) = §(P; k). Thus depth S/HY = 2n—§(P; k)—
1, as required. a

Since {z;,y;} is a minimal prime ideal of Hp for each 1 < i < n, it
follows that dim S/Hp = 2n — 2. Hence Hp is Cohen—Macaulay if and only
if (P;1) = 1. In other words, Hp is Cohen-Macaulay if and only if P is a
chain.

Corollary 10.3.10. Let P be an arbitrary finite poset with |P| = n and
rank(P) = r. Then
(i) depth S/Hp > depth S/H% > --- > depth S/HY}, > depth S/Hp;
(ii) depth S/HE =n — 1 for all k > rank(P);
(iil) limg— oo depth S/HE =n — 1.

Corollary 10.3.11. Given an integer n > 0 and given a finite sequence

(a1,a2,-..,a7-) of positive integers with a3 > ay > -+ > a, and with
a1 + -+ 4+ a, = n, there exists a squarefree monomial ideal I C S =
K1, ..., ZnyY1,- -, Yn] such that

(i) depthS/Ik =2n— (a1 +---+ax) — 1, k=1,2,...,r=1;
(ii) depth S/I¥ =n —1 for all k > r;
(iii) limp_, o0 depth S/IF =n — 1.

Proof. Let A(a;) denote the antichain with |A(a;)] = a; and P the ordinal
sum of the antichains A(aq), A(ag),..., A(a,). In other words, P is the poset
whose underlying set is the disjoint union of the sets A(ay),..., A(a,) with
the property that o < § for o, 8 € P if and only if o € A(a;), B € A(a;) with
i < j. Thus rank(P) =r—1. Since a1 > a9 > -+ > a, and a1 +---+a, = n, it
follows that §(P; k) = a1 +as+---+ag if 1 <k <r—1and that 6(P;k) =n
for all £ > r. O
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In general, given a function f : N — N, we introduce the function Af by
setting (Af)(k) = f(k) — f(k+1) for all k € N.

Corollary 10.3.12. Given a nonincreasing function f: N — N with
f(0) = 2klim flk)+1

for which Af is nonincreasing, there exists a monomial ideal I C S such that
depth S/I* = f(k) for all k > 1.

Proof. Let limy_.o f(k) =n—1and f(0) = 2n—1. Let a, = (Af)(k—1) for all
k> 1. Thus f(k) = 2n—(a1+--ax)—1for all k > 1. Since f is nonincreasing,
one has ay > 0 for all k. Since Af is nonincreasing, one has a; > as > ---. Let
r > 1 denote the smallest integer for which a; +as+---+a, =n. Thusa; >0
for 1 <4 <7 and a; =0 for all ¢ > r. It then follows from Corollary 10.3.11
that there exists a monomial ideal I C S for which depth S/I* = f(k) for all

k> 1. a

To complete the picture we quote without proof the following fact [HHOG,
Theorem 4.1]: given a bounded nondecreasing function f:N\ {0} — N there
exists a polynomial ring S (with a suitable number of variables) and monomial
ideal I C S such that depth S/I* = f(k) for all k.

It is an open question whether any eventually constant numerical function
can be the depth function of the powers of a monomial ideal.

10.3.3 Normally torsionfree squarefree monomial ideals and
Mengerian simplicial complexes

In view of Proposition 10.3.2 it is of interest to know when the Rees algebra of
an ideal is Cohen—Macaulay in order to compute the limit depth of an ideal.

Let I C S be a monomial ideal. Then the Rees algebra R(I) of I is a toric
ring. By a famous theorem of Hochster , a toric ring is Cohen—Macaulay if it is
normal; see Theorem B.6.2. It is a well-known fact (see for example [HSV91])
that the Rees algebra R(I) is normal if and only if all powers of I are integrally
closed, that is, if I is normal. Combining this fact with Theorem 1.4.6 we
obtain

Theorem 10.3.13. Let I be a squarefree mormally torsionfree monomial
ideal. Then R(I) is Cohen—Macaulay.

Now we want to give a combinatorial interpretation of the condition on
squarefree monomial ideal I to be normally torsionfree. To this end, we may
view I as the facet ideal of a simplicial complex.

Let A be a simplicial complex on [n]. Generalizing the concept of vertex
covers of a graph introduced in Subsection 9.1.1, we call a subset C C [n] a
vertex cover of the simplicial complex A, if C N F #  for all F € F(A).
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The vertex cover C is called a minimal vertex cover, if no proper subset
of C is a vertex cover. We denote the set of monomial vertex covers of A by
C(A).

Obviously the minimal vertex covers of A correspond to the minimal prime
ideals of the facet ideal I(A) = (xp: F € F(A)) of A, so that, according to
Corollary 1.3.6,

(A= () Pe.
cec(a)
By Theorem 1.4.6, I(A) is normally torsionfree if and only if I(A)*) = I(A)*
for all k. In other word, I(A) is normally torsion free, if the symbolic Rees
algebra
R (I(4)) = @ 1(A) Ptk
k>0

of I(4) is standard graded.

In order to analyze when R°(I(A)) is standard graded, we introduce two
invariants attached to an integer vector a = (a1,...,a,) € Z.

We let o(a) be the largest integer & such that x* € I(A)*), and let o(a)
the largest integer r such that x® € I(A)".

Obviously, o(a) < o(a), and equality holds for all a € Z, if and only if
R3(I(4)) is standard graded.

Let F(A) = {Fi,..., Fn}, and let M be the incidence matrix of A, that
is, the m x n-matrix M = (e;;) with e;; = 1if j € F; and e;; =0 if j & F;.

For two vectors a and b in Z"™ we write a > b if a; > b; for all 7, and
we set 1 = (1,...,1). Then the invariants o(a) and o(a) can be expressed as
follows.

Proposition 10.3.14. Let a € Z} . Then

(a) o(a) = min{(c,a): c€ Z%, M -c > 1};

(b) o(a) = max{(b,1): be Z7", M'-b < a}.

Here M* denotes the transpose of M and { , ) the standard scalar product.

Proof. (a) To say that x* € I(A)*) = Neee(a) Pk is equivalent to saying
that >, ~a; > k for all C' € C(A). This implies that

o(a) = min{z a;: C €C(A)}. (10.9)
ieC

Let ¢ € {0,1}"™, and set supp(c) = {i € [n]: ¢; # 0}. Then C' C [n] is a
vertex cover of A if and only if C = supp(c) with M - ¢ > 1. Thus, since
(a,c) = > ;cc ai, it follows from (10.9) that

o(a) = min{{a,c): c€{0,1}", M -¢c>1}
= min{(a,c): c€ Z}, M -c>1}.
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(b) Let ay, . .., a,, be the (0, 1)-vectors with supp(a;) = F; fori =1,...,m.

Then x® € I(A)* if and only if there exist nonnegative integers b1, . . . , b, such
that k = >""", b; and Y ;" b;a; < a. Let b = (b1,...,by). Then (b,1) =k
and M*-b =" ba;. This yields the desired formula for o(a). 0

A simplicial complex A on [n] with incidence matrix M is called a Men-
gerian simplicial complex if for all a € Z7,

min{(c,a): c€ Z, M -c¢ > 1} = max{(b,1): be Z7', M'-b < c}.

Our discussion so far combined with Proposition 10.3.14 and Theorem
10.3.13 yields the following conclusion.

Corollary 10.3.15. Let A be a simplicial complex. Then the following con-
ditions are equivalent:

(a) I(AQ) is normally torsionfree;

(b) R(I(4)) = R*(I(4));

(¢c) R5(1(AQ)) is standard graded;

(d) A is a Mengerian simplicial complez.

If the equivalent conditions hold, then R(I(A)) is Cohen—Macaulay.

10.3.4 Classes of Mengerian simplicial complexes

Let A be a simplical complex on the vertex set [n]. A cycle or, more precisely,
an s-cycle of A (s > 2) is an alternating sequence of distinct vertices and facets
vy, F1,...,0s, Fs, 0541 = v1 such that v;,v,41 € F; for i = 1,...;s. A cycle is
special if it has no facet containing more than two vertices of the cycle.
Observe that a cycle of a graph is always special.

By a result of [FHO74, Theorem 5.1], a simplicial complex which has no
special odd cycles is Mengerian. Thus from Corollary 10.3.15 we obtain

Theorem 10.3.16. Let A be a simplicial complex which has no special odd
cycles. Then I(A) is normally torsionfree.

Since the bipartite graphs are exactly those which have no odd cycles, we
obtain

Corollary 10.3.17. Let G be a bipartite graph. Then I(G) is normally tor-
sionfree.

Corollary 10.3.17 has an interesting consequence

Corollary 10.3.18. Let G be a bipartite graph with ¢ connected components.
Then limy,_, », depth S/I(G)F = c.
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Proof. Since I(G) is normally torsionfree, it follows from Corollary 10.3.15
that R(I(4)) is Cohen—Macaulay. Thus Proposition 10.3.2 implies that

Jim_depth S/I(GYF =n —0(I(A)).

It follows from the subsequent lemma that £(1(A)) is the rank of the incidence
matrix of G. By a result of [GKS95, Theorem 2.5], the rank of the incidence
matrix of a graph G with n vertices is equal n — ¢y, where ¢g is the number
of components of G which do not contain an odd cycle. Since G is bipartite,
we have ¢ = ¢, and the assertion follows. O

Lemma 10.3.19. Let I C S = K[x1,...,2,] be a monomial ideal generated
in a single degree with G(I) = {x®,...,x®m}, and let A be the m X n matriz
whose columns are the vectors ay, ..., a,,. Then {(I) = rankg A.

Proof. Since by assumption all generators of I have the same degree, it follows
that R(I)/mR(I) = R where R = K[x?!,...,x®"]. Therefore, {(I) = dim R.
Since R is an affine K algebra, its Krull dimension is given by the transcen-
dence degree trdeg Q(R)/K of the quotient field of R over K; see [Mat80,
(14G) Corollaryl] or [Kun08, Corollary 3.6]. Let {a;,,...a;,} be a maximal
set of linearly independent row vectors of A over Q. Then rankg A = ¢. On
the other hand, the K subalgebra T'= K[x®1,...,x®¢] is a polynomial ring
and Q(R) is algebraic over Q(T'). Therefore, trdeg Q(R) = trdeg Q(T) = ¢,
as desired. O

Observe that if I is the facet ideal of a simplicial complex A, then A is
nothing but the incidence matrix of A.

A simplicial complex without a special odd cycle can be also characterized
in terms of its incidence matrix. In fact, a special cycle corresponds to an s x s
submatrix of the form

100 01
110 00
011 00
: 10
0O - - -011

with s > 2. Therefore A has no special odd cycle if and only if its incidence
matrix has no such s x s submatrix with odd s, even after a permutation of
rows and columns.

We say that A is an unimodular simplicial complex if every square sub-
matrix of its incidence matrix has determinant equal to 0, +1.

The above matrix has determinant equal to 2 if s is odd. Therefore a
unimodular simplicial complex has no special odd cycle. In particular it is
Mengerian and consequently we have
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Corollary 10.3.20. Let A be a unimodular simplicial complex. Then I(A) is
normally torsionfree.

As a last example of Mengerian simplicial complexes we consider simplicial
forests. A simplicial complex A with F(A) = {F1,..., F,} is called a forest
if for each nonempty subset {F;,, ..., F;, } C F(A), the simplical subcomplex
I’ with F(I') = {F;,, ..., F;, } has a leaf. Recall from Chapter 9 that a facet
F of A is called a leaf, if either F' is the only facet of A, or there exists
G e F(A), G # F such that HNF C GNF for each H € F(A) with H # F.

A graph which is a forest may also be viewed as a simplicial forest, and
any forest is a quasi-forest.

Proposition 10.3.21. Let A be a forest. Then A has no special cycles of
length > 3. In particular, I(A) is normally torsionfree and R(I(A)) is Cohen—
Macaulay.

Proof. Assume that A has a special cycle vy, F1,...,vs, Fs, 0541 = v1 with
s > 3. Let I" be the subcomplex with the facets Fi, ..., Fs and F; a leaf of I'.
Then there exists a facet F; # Fy such that F;NFy # 0 and F;NFy C F;NE
for all j # 1. Therefore, vi,v2 € F;. Since F} is the only facet of the cycle
which contains vy, v, we get F; = Fi; a contradiction. O

Corollary 10.3.22. Let A be a forest with vertex set [n]. Assume that A is
pure and has m facets. Then limy_ o, depth S/I(A)¥ =n —m.

Proof. By Proposition 10.3.21, R(I(4)) is Cohen—Macaulay, so that we may
apply Proposition 10.3.2 to conclude that limy_, S/I(A)k = n — £(I(A)).
Since all generators of I(A) have the same degree, Lemma 10.3.19 implies
that £(I(A)) = rankg A, where A is the incidence matrix of A. Any forest

is a quasi-forest. Thus we may choose a leaf order Fi, ..., F,,. Since for each
i, the facet F; has a vertex which does not appear as a vertex of any Fj for
J < i, one sees that rankg A = m. The desired result follows. O
Problems

10.1. Compute the toric ideal of each of the following monomial configura-
tions:

{I%axlx%z%};

{@122, 2425, 1123, D273, T3T4, T3T5 }5

{$1$2, £an$37 <oy, X2g—1T2¢g, Z'Qq(El};

{21287 1 i=0,1,...,q};

{$1$3$57$1$3$6, L1T4X5,T1X4L6, L2XL3T5, L2L3X6, $2$4$57$2$4$6}§
{wizjor + 1 <i<j <k <5}
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10.2. (a) Compute the toric ideal I 4,,, where P is the poset of Problem 9.6.
(b) Compute the toric ideal I 4., where G is the finite graph of Problem 9.10.
(c) Compute the toric ideal I 4,,, where G is the complete graph with 4 vertices.

10.3. Show that every primitive binomial belonging to a toric ideal is irre-
ducible.

10.4. Let G be the complete graph with 6 vertices.

(a) How many primitive even closed walks of length 4 does G possess?
(b) How many primitive even closed walks of length 6 does G possess?
(¢) How many primitive even closed walks of length 8 does G possess?

10.5. Let G be a bipartite graph. Show that the toric ideal I 4, is generated
by quadratic binomials if and only if every cycle of length > 4 has a chord.

10.6. Among the following monomial ideals, which of them satisfy the z-
condition?

2 2.
o (zf,2172,73);

L4 (031I2,$4175,$11173,$29€3,1173334,903365);

L4 (1’1503105,951$39367$1$4!E5,5ﬂ1l’49367$29€3$5,$2$3$67$2$4$5,5€2!F4$6);

10.7. Let I C S = Klx1,...,x6] be the monomial ideals generated by
L1Tg, L2L5, L3L6, L4L5, L4L6, L5L6-

(a) Show that I has a linear resolution.

(b) Find an ordering of the monomials belonging to G(I) for which I has
linear quotients.

(c) Does I? have linear quotients?

10.8. Let I be a monomial ideal generated by quadratic monomials w1, ..., us
and suppose that I has linear quotients with respect to this given ordering. Is
it true or false that I? has linear quotients with respect to the lexicographic
ordering

u%,ulug, . ,ulus,ug, UUZ, .« « v s u? ?

10.9. Let G be the Cohen—Macaulay tree on {1,...,6} with the edges
{1,2},{2,3},{3,4},{3,5},{5,6}.

(a) Find the vertex cover ideal I of G.
(b) Show that I¢ has linear quotients.
(c) Does (Ig)? have linear quotients?

10.10. Let G be the Cohen-Macauly chordal graph on {1,...,6} with the
edges
{1,2},{1,3},{1,4},{2,3},{3,4},{3,5},{4,5},{4,6}, {5,6}

(a) Find the vertex cover ideal I of G.
(b) Show that I has linear quotients.
(c) Does (Ig)? have linear quotients?
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10.11. Find a Cohen—-Macaulay finite graph G which is neither bipartite nor
chordal such that all powers of the vertex cover ideal I of G have a linear
resolution.

10.12. Let P be the poset of the positive integers dividing 12, ordered by
divisibility. Compute the depth of S/HE for all k.

10.13. Let A be a simplicial complex on [n] and A* the simplicial complex
with F(A*) = C(A). Show:

(a) A™ = A.

(b) 1(A*) = Npera) Pr-

10.14. Let A be a simplicial complex on [n]. A vector a = (ay,...,a,) with
nonnegative integer coefficients is called a vertex cover of order k of A if
Yicr >k for all F' e F(A).

(a) Let a be a vertex cover of order k and b a vertex cover of order ¢. Show
that a + b is a vertex cover of order k + /.

(b) Let S = Klz1,...,x,] and S[t] be the polynomial ring over S in the
indeterminate ¢. For each k > 0, let Ax(A) C S[t] be the K-subspace of S[t]
spanned by the monomials x2t* where a is a vertex cover of order k of A.
Use (a) to prove that A(A) = @~ Ax(A) has the natural structure of a
graded S-algebra. B

(c) Show that A(A) = R*(I(A*)).

(d) Let G be a bipartite graph. Then show that A(G) is standard graded.

Notes

The study of homological properties of powers of a graded ideal has been
one of the main topics of commutative algebra in recent years. Important
invariants, like the regularity, the depth or the set of associated prime ideals
become stable for high powers; see [CHT99], [Kod00] and [Bro79]. The powers
of an ideal with linear resolution or linear quotients need not have a linear
resolution. On the other hand, Romer [Roe01b] gives an upper bound for the
regularity of all powers of a graded ideal in terms of the so-called z-regularity
of the corresponding Rees ring. This implies that if the z-regularity is zero,
then all powers of the ideal do have a linear resolution. By using Romer’s
result another criterion in terms of the initial ideal of the defining ideal of
the Rees algebra was obtained in [HHZ04a]. This criterion in combination
with Froberg’s [Fro90], Dirac’s theorem [Dir61] and [OH99] is used to prove
Theorem 10.2.6. The result on quadratic Grobner bases arising finite posets
(Theorem 10.1.3) is taken from [Hib87].

For certain classes of monomial ideals which naturally arise in combinato-
rial contexts the depth of the powers can be computed by the method of linear
quotients. The examples given here are taken from [HHO06]. Theorem 10.3.13
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is a direct of consequence of a result in the paper [SVV94] by Simis, Vas-
concleos and Villarreal. Also the fact that edge ideal of a bipartite graph
is normally torsionfree is shown in [SVV94]. Most of the results of Subsec-
tions 10.3.3 and 10.3.4 are taken from [HHTZO08]. There the symbolic Rees
algebra is interpreted as a vertex cover algebra. Higher order vertex covers
and vertex cover algebras were first introduced in [HHTO7]. The relationship
between facet ideals and Mengerian simplicial complexes was first studied in
the paper [GVV07] of Gitler, Valencia and Villarreal. Combining the results
of this paper with results of Escobar, Villarreal and Yoshino [EVYO06], one
obtains another proof of Corollary 10.3.15. Important classes of Mengerian
simplicial complexes are the unimodular simplicial complexes. In [HHTO09] it
is shown that the vertex cover algebra of a weighted simplicial complex is
standard graded for all weight functions if and only if the simplical complex
unimodular.

Simplicial forests were introduced by Faridi [Far02]. It turns out that they
are just the hypergraphs which have no special odd cycle of length > 3.
In hypergraph theory such hypergraphs are called totally balanced. In her
paper [Far02], Faridi showed that the Rees algebra of the facet ideal of a
simplicial tree is a normal Cohen-Macaulay domain. This result is related to
Proposition 10.3.21. In [Far04] it is shown that simplicial trees are sequentially
Cohen—Macaulay.
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Shifting theory

Algebraic shifting, introduced by Gil Kalai, is one of the most powerful tech-
niques to develop the extremal combinatorics of simplicial complexes. We will
make a self-contained and systematic study of the algebraic aspects of shifting
theory from a viewpoint of generic initial ideals and graded Betti numbers.

11.1 Combinatorial shifting

First of all, we discuss combinatorial shifting, which played an important role
in the classical extremal combinatorics of finite sets.

11.1.1 Shifting operations

A simplicial complex A on [n] is shifted if, for F € A, i € F and j € [n] with
j >1i,onehas (F\ {i})U{j} € A.

Note that A is shifted if and only if 1 is squarefree strongly stable.

A shifting operation on [n] is a map which associates each simplicial
complex A on [n] with a simplicial complex Shift(A) on [n] and which satisfies
the following conditions:

(S1) Shift(A) is shifted,;

(S2) Shift(A) = A if A is shifted;
(Ss) f(4) = f(Shift(A));

(S4) Shift(A’) C Shift(A) if A" C A.

11.1.2 Combinatorial shifting

In classical combinatorics of finite sets, Erdos, Ko and Rado introduced com-
binatorial shifting.

Let A be a simplicial complex on [n]. Let 1 <14 < j < n. Write Shift;;(A)
for the collection of subsets of [n] consisting of the sets C;;(F) C [n], where
F € A and where

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 211
DOI 10.1007/978-0-85729-106-6_11, (©) Springer-Verlag London Limited 2011
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Ci,(F){(F\{i})U{j}, if i€ F, j¢F and (F\{i})U{j} ¢ 4,

F, otherwise.

It follows easily that Shift,;(A) is a simplicial complex on [n].

Lemma 11.1.1. The operation A — Shift;;(A) satisfies the conditions (S2),
(S3) and (Sy).

Proof. Since |C;;(F)| = |F| for all faces F' of A and since C;;(F) # Cy;(G) if
F # G, it follows that A and Shift;;(A) have the same f-vector. Hence (S3)
is satisfied. The condition (S4) is clearly satisfied.

Let A be shifted and F a face of A. Let i € F and i < j with j & F.
Since A is shifted, it follows that (F \ {i}) U {j} must be a face of A. Thus
Ci;(F) = F for all faces F' of A. Hence (S2) is satisfied. O

Lemma 11.1.2. There exists a finite sequence of pairs of integers
(ilvjl)a (i27j2)1 ceey (iqajq)
with each 1 < iy < ji. < n such that
Shift; ;, (Shift;, ;. (--- (Shift;,;, (4))---))
1s shifted.

Proof. For each face F = {j1,...,jq4} of A, we set ¢(F) = j1 + -+ + ja-
Let ¢(A) = > pea c(F). Obviously one has ¢(A) < ¢(Shift;;(A). If A is not
shifted, then there exists a face F' together with ¢ and j with ¢ < j such that
ieF,j¢ Fand (F\{i})U{j} € A. Since ¢(F) < ¢(C;;(F)), it follows that
¢(A) < ¢(Shift;;(A). This simple observation yields the desired result. O

An arbitrary shifted complex which is obtained by a finite number of
sequences of operations as described in Lemma 11.1.2 will be denoted by A€
and will be called a combinatorial shifted complex of A. It follows from
Lemma 11.1.1 that the operation A — A€ is a shifting operation. Such an
operation is called combinatorial shifting. A combinatorial shifted complex
A€ of A is, however, not necessarily uniquely determined by A. Later, we
will see some extremely bad behaviour of combinatorial shifting. The only
advantage of combinatorial shifting is that it is easily computable.

11.2 Exterior and symmetric shifting

We now introduce exterior algebraic shifting and symmetric algebraic shifting.
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11.2.1 Exterior algebraic shifting

Let K be an infinite field and E = @);_, /\d V the exterior algebra of a vector
space V over K of dimension n with basis eq,...,e,. Let A be a simplicial
complex on [n] and Ja C E the exterior face ideal of A. Let <,c, denote the
reverse lexicographic order on E induced by the ordering e; > --- > e,. Let

A =gin__ (Ja).

We know by Proposition 5.2.10 that the exterior face ideal Ja. of A€ is
strongly stable. Thus A€ is shifted. We call A° the exterior algebraic
shifted complex of A.

Proposition 11.2.1. The operation A — A€ is a shifting operation.

Proof. Since A€ is shifted, the condition (S7) is satisfied. Since J 4 is strongly
stable, it follows that gin_ _ (Ja) = Ja, see Theorem 5.2.9. Thus (S2) is
satisfied. On the other hand, since gin_ _ (Ja) and Ja have the same Hilbert
function, one has f(A°) = f(A). Thus (S3) is satisfied. Finally, if I" is a
subcomplex of A, then Jo C Jp. Thus Jae C Jpre. Hence I'® C A€. Thus
(Sy) is satisfied. O

The shifting operation A — A€ is called the exterior algebraic shifting.

11.2.2 Symmetric algebraic shifting

Let K be a field of characteristic 0 or of characteristic > n and S =
K[xz1,...,x,] the polynomial ring in n variables over K. We work with the
reverse lexicographic order <;e, on S induced by the ordering x1 > --- > x,,.
Let I C S be a squarefree monomial ideal and gin___ (I) its generic ini-
tial ideal with respect to < ey. Since K is of characteristic 0, it follows that
gin___(I) is strongly stable. However, gin___ (/) is no longer squarefree.

Lemma 11.2.2. Let I C S be a squarefree monomial ideal. Then
m(u) +degu <n+1
for all monomial u belonging to G(gin___ (I)).
Proof. Since gin____([I) is strongly stable, it follows from Corollary 7.2.3 that
Biis(I) = Z (m(uz - 1>7
u€G(gin_,_ (I));

where G(gin_ _ (I)); is the set of monomials u € G(gin_ (1)) of degree j.
Thus in particular
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max{m(u) +degu —1:u € G(gin_,_ (1))}

is the highest shift in the resolution of gin___(I). Since I is squarefree ideal,
Hochster’s formula (Theorem 8.1.1) guarantees that the highest shift in the
resolution of I is at most n. Since the Betti number with the highest shift
in the resolution on [ is extremal, it follows from Theorem 4.3.17 that the
highest shift in the resolution of I and that of gin__ (I) coincides. Hence
m(u) +degu —1 < n for all u € G(gin___(I)), as desired. O

In order to define symmetric algebraic shifting, we must introduce a cer-
tain operator, called the squarefree operator, which transfers gin___ (I) into
a squarefree strongly stable ideal.

Let w = x4, zi, - - - ;, be a monomial of S, where ¢; < iy <--- <144, we set

U= T iy 1 T (1) T (d-1):
One has
m(u’) — degu’ = m(u) — 1. (11.1)

Thus u? belongs to S if and only if m(u)+degu < n+1. The operator u — u®
will be called squarefree operator.

Corollary 11.2.3. Let I be a squarefree ideal of S. Then u® belongs to S for
all u € G(gin___ (I))).

The squarefree operator u — u° naturally arises in the very elementary
stage of enumerative combinatorics.

Ezample 11.2.4. Let A,, 4 be the set of monomials in the variables z1,...,z,
of degree d and B,, 4 the set of squarefree monomials in the variables z1, ..., z,
of degree d. In high school mathematics we learn |B,, 4| = (Z) What is |4, 4|?
We associate each monomial v € A,, 4 with 4 € By, 4q—1,4. The map v — u?
gives a bijection between A, 4 and Bj44-1,4. Its inverse is the map which
associate each squarefree monomial v = z;, ---x;, of Byyg_1,4, Where 1 <
i1 <---<ig<n+d-—1, with the monomial

T _
V' = T4y Tg—1 " Tij—(j—1) """ Tig—(d—1)

belonging to A, 4. Thus |A, 4| = |Bn+d—1.4]- Hence |A, 4] = (”+3_1) =

n+d—1
( n—1 )
Let I C S be strongly stable ideal. We write I for the squarefree monomial

ideal generated by the monomials uf,...,u?.

Lemma 11.2.5. If I C S is strongly stable with G(I) = {uq,...,us}, then I
is squarefree strongly stable with G(I7) = {u{,...,uJ}.
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Proof. First, suppose that, for some u; € G(I), one has u & G(I?). Then
there exists an integer ¢ # j such that uf|ujo. If uf = uf, then u; = uj, a
contradiction. Hence we may assume that uf is a proper divisor of uf.

Let u; = g, @k, -+, and u; = x5, 27, ---x,. Then we have uf =
Thy Thyt1 " Ty (t—1) A0d U] = Uj = Ty, Tip 41 Tyyq(a—1)- Since uf divides
uf properly, there exist py < py <--- < p;such that ky = 1,,, +(p1—1), ka+1 =
lpy + (p2 —1),....ky + (t —1) =1, + (pr — 1) with ¢ < d. It follows that
ky =1, + (pr —7) for r = 1,...,t. Thus u;, = Hf:l Ty, 4(p,—r)- Since I is
strongly stable and u; € I it follows that Hi:l xy, € I, contradicting the
fact that u; € G(I).

Second, to see why I7 is squarefree strongly stable, we take a monomial
u = x4 x5, € G(I) together with ug = (7yu”)/2;, 4 (a—1), Where x; does
not divide u” and where b < i, + (¢ — 1) and a € [d]. We claim ug € I°.
Choose p < a such that i, + (p — 1) < b < ip41 + p. (Here ig = 1). Let

p a—1 d
UZ(HfUz‘j)xb—p( IT =-0CT] =)

Jj=p+1 j=a+1

Since b—p < ip41 < i, and since [ is strongly stable, the monomial v belongs
to I. One has v7 = (2pu”)/2;, 4+ (a—1) = vo- Let, say, v = x4, --- 24, with £; <
-+ < £4. Again, since I is strongly stable, it follows that w = x4, - - - o, € G(I)
for some ¢ < d. Since w? divides v7 = ug, one has ug € I, as desired. a

Let A be a simplicial complex on [n]. Since the base field K is of charac-
teristic 0 or of characteristic > n, Proposition 4.2.4 implies that gin_ _ (/a)
is strongly stable. Thus (gin_ _ (Ia))? is a squarefree strongly stable ideal of
S. Now, the symmetric algebraic shifted complex of A is defined to be
the shifted complex A® on [n] with

Ia- = (ging  (14))7.

Lemma 11.2.6. If I C S is a strongly stable ideal, then B;i+;(I) = Biit;(I7)
for alli and j.

Proof. The desired formula follows from (11.1) together with Corollary 7.2.3
and Corollary 7.4.2 a

Lemma 11.2.6 implies in particular that the operation A — A® satisfies
the condition (S3). On the other hand, as in the case of exterior shifting one
shows that the operation A — A? satisfies the condition (Sy).

Finally, the fact that the operation A — A® satisfies the condition (S2)
follows from Theorem 11.2.7 stated below. We call the shifting operation A —
A% symmetric algebraic shifting.

Theorem 11.2.7. Let I C S be a squarefree strongly stable ideal. Then

I'=gin___ (I)°.
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Proof. Working with induction on the largest integer m(u) for which u € G(I),
by using Lemma 11.2.8 we may suppose that there is u € G(I) with m(u) = n.

Let I' = I : (z,) and I” the squarefree ideal of S generated by those
squarefree monomials u € G(I) with m(u) < n. Each of I’ and I" is squarefree
strongly stable and I C I C I'. Our assumption of induction guarantees that
I'=gin__ (I')” and I"” = gin___ (I")?. Hence

I"Ccgin_ (I)7 cT'

We claim that I C gin___ (I)?. Since I C gin_ _ (I)?, each u € G(I) with
m(u) < n belongs to gin___ (I)7.

Now, let wy,...,w, be the monomials belonging to G(gin_ (1)) with
each m(w;) = n, where degw; < --- < degw,. Since gin<m(f)(r C I, each
zpw; belongs to I. However, since m(u) = n and since I is squarefree, one
has w; € I for each 1 < ¢ < ¢g. Thus each w; must be divided by a monomial
u; € G(I). If m(u;) < n, then u; € I” C gin___ (I)?. This is impossible
because w; € G(gin_ _ (I)?) and u; # w;. Hence m(u;) = n.

Recall from Corollary 7.2.3 that, for a squarefree strongly stable ideal I of
S, one has

Brn—in(I) =|{u e G(I) : degu = i, m(u) = n}|. (11.2)
Therefore 3, _degu;,n(I) # 0. Assume degu; < degw;. Then

ﬁnfdeg uy,m (gin<re\, (I)U) =0.

However, in general one has
Bii+j(I) < Biivj(ging, ., (I)7) (11.3)

for all 4 and j. Thus degu; cannot be less than degw;. Hence degu; =
degw; and w; = w;. In particular, wy belongs to G(I). Suppose now that
Uy = wi,...,u; = wi. The same argument that shows that u; = w; yields
Up4+1 = Wi1. Hence each w; belongs to G(I). Thus in particular

{weG(gin,  (I1)7):m(u) =n} C{uec G(I): m(u) =n}.
However, the inequalities (11.3) together with (11.2) guarantee that
[{u € G(I) s mlu) = n}| < [{w € Glgin_.(1)°) : m(u) = n}].
Hence
{fue GI) : m(u) =n} ={w e G(gin_,_ (I)7) : m(u) = n}.

Thus each v € G(I) with m(u) = n belongs to gin_ _ (/). This completes
the proof of our claim that I C gin___ (I)7.
Finally, the Hilbert function of I and that of gin_ _ (I)? coincides, see

Corollary 6.1.5. Hence, I = gin___ (I)?, as desired. O
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Lemma 11.2.8. Let J C Klx1,...,2Zy] be a graded ideal, where m < n. Then
gin _ (J)S =gin__ (JS).

Proof. We may assume m < n. Let I = JS. There exists a nonempty Zariski
open set U C GL(n; K) such that inc _ (a()) = gin <,ey() for all o =
(aij) eU.

Let M, (K) be the set of all n x n-matrices with entries in K. Note that the
restriction map M, (K) — M, (K) given by (ai;)ij=1,.,n — (@ij)ij=1,..,m is
an open map. Let V' C GL(m; K) be the image of U under this restriction.
Then V is a nonempty Zariski open subset of GL(m; K). Hence there exists
a € U whose restriction g satisfies in< __(8(J)) = gin <yev(J).

By Lemma 4.3.7 and by the definition of the restriction we obtain

(in<rev (Oé(])), Tm41s" " 7'Tn) = in<rev (Oé([), Lm+1s " 7xn) (114)
= in<rev (B(J)’ Tm41s" " 73771) = (in<rev (ﬁ(‘]))’ LTm41s" " >$n)'

By using Corollary 4.3.18 we have projdim S/gin__ (I) = projdim S/I =
projdim K[z1,...,2,]/J < m. Thus by using Corollary 7.2.3 we see that
m(v) < m for all v € G(gin_ _ (1)) = G(in<,, (a(l))). Hence by (11.4) the
desired result follows. O

We conclude this section with the following observation

Proposition 11.2.9. Let I be a strongly stable monomial ideal. Then one has
gin_ _ (I?) = I. In particular, the squarefree operator establishes a bijection
between the strongly stable ideals and the squarefree strongly stable ideals.

Proof. Let J = gin___(I?). Then J is strongly stable and by Theorem 11.2.7
one has J? = I?. Therefore G(J?) = G(I?). By Lemma 11.2.5 it follows that
G(J) = G(). O

11.3 Comparison of Betti numbers

We now study the comparison of graded Betti numbers for the different shift-
ing operations. We expect the following inequalities

Bi;(Ia) < Bij(Tas) < Bij(Tae) < Bij(Tae) < Bij(Latex),

where Al®* is the simplicial complex whose Stanley—Reisner ideal is the unique
squarefree lexsegment ideal with the same Hilbert function as Ia.

In this chain of inequalities, the inequality 3;;(1as) < fij(Iae) and even
the inequality 3;;(Ia) < Bi;(Iae) is not known. All other inequalities will be
proved in the following subsections.
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11.3.1 Graded Betti numbers of T4 and Ixs

In this subsection K will be an infinite field of characteristic 0 or of charac-
teristic > n. We will prove the following

Theorem 11.3.1. Let A be a simplicial complex: on the vertex set [n]. Then
Bij(Ia) < Bij(Ia=) foralli and j

Proof. By Corollary 3.3.3 we know that 3;;(I) < B;;(gin. _ (I)). Hence the
theorem follows from Lemma 11.2.6. O

11.3.2 Graded Betti numbers of Ipe and -

Our goal is to show the inequalities B4 (Lae) < Biitj(Lac) for all ¢ and j.

Let K be an infinite field, S = Klz1,...,z,] the polynomial ring in n
variables over K and E = @),_, Eq with Eq = A%V the exterior algebra of a
vector space V over K of dimension n with basis ey, ..., e,. Let the general
linear group GL(n; K) act linearly on E. Let <;o, be the reverse lexicographic
order on E induced by the ordering e; > --- > e,.

Given an arbitrary graded ideal I = @)_, I4 of E with each I; C Eq, fix
¢ € GL(n; K) for which in<_ (¢(I)) is the generic initial ideal gin <ye,(I) of
I. Recall that the subspace Eq = A®V is of dimension (") with a canonical
K-basis ep, F € ([Z]), where ([Z]) denotes the set of all d-element subsets
of [n]. Fix a K-basis fi,..., fs of I;, where s = dimg I;. Write each o(f;),

1 <i < s, of the form
e(fi)=> ofer
Fe('y)
with each of" € K. Let M(I,d) denote the s x () matrix

M(I,d) = (af)gigs,Fe([’;])

whose columns are indexed by F € ([Z]). Moreover, for each G € ([Z]), write
Mg (I, d) for the submatrix of M (I, d) which consists of the columns of M (I, d)
indexed by those F € ([Z]) with e¢ <,ev ep and write M (I,d) for the
submatrix of M¢ (1, d) which is obtained by removing the column of M¢(1,d)
indexed by G.

Lemma 11.3.2. Leteg € E; withG € ([Z]). Then one haseg € (gin_,_ (I))a
if and only if rank(M(,(I,d)) < rank(Mg(I,d)).

Proof. One has rank(M/.(I,d)) < rank(M¢(I,d)) if and only if the row vector
(0,...,0,1) with “1” lying on the column indexed by G belongs to the vector
space spanned by the row vectors of Mg(I,d). This is equivalent to saying
that there exist ¢1,...,¢s € K such that eq = inc (37, cio(fi))- O
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Corollary 11.3.3. The rank of a matriz Mg(I,d), G € ([Z]), is independent
of the choice of ¢ € GL(n; K) for which gin__ (I) = inc,, (¢(I)) and of the
choice of the K-basis f1,..., fs of I;. More precisely, rank(Mq(I,d)) is equal
to the number of F' € ([Z]) for which e € (gin_ _ (I))q and eg <,c, €F.

Proof. Note that rank(M/,(I,d)) = rank(Mg(I,d)) — 1 if rank(M((I,d)) <
rank(Mg(I, d)). Therefore, the assertion follows from Lemma 11.3.2. O
).

Corollary 11.3.4. Let I C E be a homogeneous ideal and ¢ € GL(n; K
Then one has rank(M¢ (1, d)) = rank(Mg(y(I),d)) for all G € ([Z]),

Proof. Recall that there is a nonempty Zariski open subset U C GL(n; K) such
that gin_ (1) = in.,, (¢(I)) for all ¢ € U. Similarly, there is a nonempty
Zariski open subset V C GL(n; K) such that ging _(Y(I)) =inc, (¥ (¥(1)))
for all ¢ € V. Since U=t = {p) : ¢ € U} is again a nonempty Zariski
open subset of GL,,(K) it follows that U=t NV # 0. If p € Uy~ NV, then
gin._(I) =inc,, (p(v(I)) = gin___ (x(I)), and the matrix M ([, d) defined
by using pyp € U and the K-basis fi,..., fs of I coincides with the matrix
M (3(I),d) defined by using p € V and the K-basis ¢(f1),...,%(fs) of ¥(I)a.

O

If w = ep is a monomial of E, then we set m(u) = max{j : j € F}.
Given a monomial ideal I C E, one defines m<;(I,d), where 1 < i < n and
1<d<n,by

m<;(I,d) =|{u=-epr €I : deg(u) =d, m(u) <i}|.

Corollary 11.3.5. Let i > d and set F(; gy = {i—d+1,i—d+2,...,i} € ().
Then given a homogeneous ideal I C E one has

me<i(ging,_(I),d) = rank(Mpuyd) (I,d)).

Proof. Let G € ([Z]). Then m(eg) < ¢ if and only if €r.. Srev €G. On
the other hand, Corollary 11.3.3 says that rank(Mg,, ,, (I,d)) coincides with
the number of monomials eq € (gin _ (I))q with €r,4 Srev €g. Thus

m<i(ging _ (1),d) = rank(Mg, , (I,d)), as required. O

Let I C E be a monomial ideal. Fix 1 < ¢ < 7 < n. Let t € K and
introduce the K-linear injective map Sfj : I — F satisfying

St (er) = 4 SP\UDLG} T ek, i€ F, i g Fand e\ (o €1,
i \=F er, otherwise,

where ex € I is a monomial. Let I;;(t) C E denote the image of I by Sf;.
Lemma 11.3.6. (a) If t # 0, then there is \f; € GL(n; K) with I;;(t) =
A (I). In particular, the subspace I;(t) is an ideal of E.

(b) Let A denote a simplicial complex on [n] and J 4 its exterior face ideal.
Then (JA)” (0) = JShiftij(A)-
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Proof. (a) Let A}, € GL(n; K) defined by

t _ €k, 1fk7£]a
Aijlex) = {eri—tej, if k=j.

We claim I;;(t) = A}, (I). Let er € I. We distinguish several cases:
(i) If j & F, then X};(er) = er = S};(er). Thus \};(er) € I;;(t).

ij

(ii) If] € Fand i € F, then )\%(GF) =tep = tSfj(ep). Thus )\ﬁj(ep) S Iij(t).

(iii) Letj € F aildi ¢ F with e(F\{j}) Ui} € I. Then )\gj(ept’) = e\ Uit
tep and Sj(er) = ep. Since er\puy € 1 Sylempnu) =
er\ih Uty € Lij (1) Thus Aj;(er) € 135(1).

(iV) Letj er r;mdz ¢ F with e(p\{j}) U{i} ¢ 1. Thetn /\fj (ep) = e(F\{j}) U{Z}+
tep and Sij(ep) = €(F\{5}) U{i} + ter. Thus )\ij(ep) S Iij(t).

Hence A};(I) C I;;(t). Since each of \f; and S}; is injective, one has I;;(t) =

Aj;(I), as desired.

(b) We claim { F C [n] : er € (Ja);;(0) } N Shift;;(A) = 0.

(i) If er € (Ja)i;(0) with ep & Ja, then there is eq € Ja with F' = (G \
{j}) U {i}. Since FF € A, G ¢ A and G = (F \ {i}) U {j}, one has

(ii) Let ep € (Ja)i;(0) with ep € Ja. Suppose F' € Shift;;(A). Since F ¢ A,
there is G C [n] with G € A such that FF = (G \ {¢}) U {j}. Hence
j € F, 1 &/ F and eg = e(r\{jHu{i} ¢ Ja. Thus eq € (JA)ij(O) and
er & (Ja)i;(0), contradiction.

Hence (Ja)i;(0) C Jsnitt,; (a)- Since
dimg (Ja)i;(0) = dimg Ja = dimg Jgnige,; (A)
it follows that (J4):;(0) = Jsnite,; (4)- O
Corollary 11.3.7. With the same notation as in Corollary 11.3.5 one has
rank(Mp,, . (Jsnite,; (a), d)) < rank(Mg, , (Ja,d)).

Proof. Let r(t) be the rank of the matrix Mg, , ((Ja)i;(t),d). By Corol-
lary 11.3.4 we have 7(t) = rank(Mp, , (Ja,d)) for all ¢ # 0. In particular
r(t) is constant for ¢ # 0. Suppose 7(0) > r(t). Then there exists a minor of
size 7(0) of MF,, , (Ja)ij(t),d)) which we denote by M (t) such that M (0) # 0.
Since M (t) is a polynomial in ¢ and since K is infinite, there exists ¢ # 0 with
M (t) # 0, as well. But this contradicts the assumption that 7(0) > r(¢). O

Corollary 11.3.8. Let A be a simplicial complex on [n]. Then for all i and
d one has
m<i(Jae,d) =2 m<i(Jac, d).
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Proof. Corollary 11.3.5 together with Corollary 11.3.7 guarantees that
mgi(gin(JA), d) 2 mgi (gin(JShiftij (A))7 d) (115)

Hence m<;(gin(Ja),d) > m<;(gin(Jac),d). In other words, m<;(Jae,d) >
m<i(J(aeye,d). However, since A is shifted, it follows that (A°)¢ = A°. Thus
m<i(Jae,d) > m<;(Jae,d), as desired. a

We now approach to the final step to prove the inequalities G4 ;(Lae) <
Biit;(Iac). We first show

Proposition 11.3.9. Let A and A’ be shifted simplicial complexes on [n] with
f(A) = f(4") and suppose that

m<i(Ja,j) = m<i(Jar, j)
for alli and j. Then for all i and j one has
Biivi(Ia) < Biigyj(Lar).

Proof. Since f(A) = f(4'), one has m<n(la,j) = m<n(las,j) for all j,
see Subsection 6.2. Proposition 7.4.3 then yields the inequalities §;;4;(a) <
Bii+j(Lar) for all i and j, as desired. O

Theorem 11.3.10. Let A be a simplicial complex, A¢ the exterior algebraic
shifted complex of A and A€ a combinatorial shifted complex of A. Then

Biitj(Tae) < Biiyi(Lac)
for alli and j.

Proof. Corollary 11.3.8 guarantees m<;(Jae,j) < m<;(Jae,j) for all ¢ and j.
Thus by virtue of Proposition 11.3.9 the required inequalities Gi;4;(lae) <
Bii+j(Lac) follow immediately. |

11.3.3 Graded Betti numbers of I4 and Ix-

Our goal is to show the inequalities B;;4;(1a) < Biitj(Lac) for all ¢ and j.
Let A be a simplicial complex on [n] and Ix C S its Stanley—Reisner ideal.
Let H x(A4; K) denote the kth reduced homology group of A with coefficients
K. If W C [n], then Ay stands for the simplicial complex on W whose faces
are those faces F' of A with FF C W.
Recall that Hochster’s formula (Theorem 8.1.1) to compute the graded
Betti numbers of I says that

Biirs(In) = > dimg Hj 2(Aw; K) (11.6)
WcC[n], |W|=i+j

for all 7 and j.
Fix 1 <i < j <n and set I' = Shift;;(A).
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Lemma 11.3.11. For all k, dimg Hy(A; K) < dimg Hy(I'; K).

Proof. By considering an extension field of K if necessary, we may assume
that K is infinite. Let A°¢ denote the exterior algebraic shifted complex of A.
By Proposition 11.4.7 we have Hy(A; K) & Hy(A®; K). Thus we need to show
that dimg Hy (A% K) < dimg Hy(I'*; K) for all k. By using (11.6) one has
Bin(In) = dimg f[n_i_g(A;K). Hence it remains to show that §;,(Iae) <
Bin(Ipe) for all i. Inequality (11.5) says that m<;(Jae,j) > m<;(Jpre,j) for
all ¢ and j. It then follows from Corollary 11.3.9 that 8,4 ;(1ac) < Biiq;(Ire)
for all ¢ and j. Thus in particular §;,(Iae) < Bin(Ipe) for all . O

Let W C [n] \ {¢,7}, and let
A = Awugy, A2 =Awugy, I =Twupy and  In = Ty
Then
ANAy=I1 NIy =Ay =Ty, and I3 UT, = Shift;; (A UAy). (11.7)

The reduced Mayer—Vietoris exact sequence of A; and A, and that of I'] and
I'; (see Proposition 5.1.8) is given by

~ o1 1 ~ ~
s Hy(Aw: K) S Hy(A1 K) ® He(Ag: K)

2 AVUAGE) 2 H(ApsK) 2
and

~ ! ~ ~
D H(Iw;K) — H(I'; K) @ Hy(Iy; K)
8§,k ad 8:/5,k fad ai,k—l
_— Hk(FlLJFQ,K) E— Hk—l(FW;K) -

Since Ay = 'y we can compare Ker(0] ;) and Ker(01 ).
Lemma 11.3.12. Suppose that j =i+ 1. Then one has
Ker (9] ;,) C Ker(01,1).
for all k.

Proof. Let [a] € Ker(9 ), where a € Cr(I'w). Since ([a)], [a]) € Hp(I}; K) @
ﬁk(ljg;K ) vanishes (in particular, [a] € Hy(I'; K) vanishes), there exists
u € Cpy1(I) with 9(u) = a. Say,

u= Z apu{iyeru{i} + Z beea, (11.8)
|F|=k+1,i¢F, FU{i}el} |G|=k+2, GEAW

where apyiy,ba € K.
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Let F ¢ W with F U {i} € I1. By the definition of Shift;; it follows
immediately that F U {i} € A; and FU {j} € As. Thus F U {j} € I5. In
particular, u € Cpy1(A;) with d(u) = a. Hence [a] € Hy(A;; K) vanishes.

Since a € ék (I'w) is a linear combination of those basis elements ep with
Fel',FCWand |F|=k+1 and since j =i + 1, it follows that d(v) = a,
where v € ék+1(A2) is the element

v = > apu{iyerufj} + > baeg.
|F|=k+1,i¢F, FU{i}el1 |G|=k+2, GeAw

Thus [a] € Hy,(As; K) vanishes. 3 3
These calculations now show that ([a],[a]) € Hy(A1; K)@ Hi(A2; K)
vanishes, as required. a

Suppose again that j =i + 1. It then follows that
dimg (Ker(d1,x)) > dimg (Ker (0] 1)),

dimg (Im(81 1)) < dimg (Im(0] 4)),

dimg (Ker(ds,1)) < dimg (Ker(d5,,)). (11.9)
On the other hand,
dimg (Hy, (A1 U Ag; K)) = dimg (Ker(93 1)) + dimge (Im(85 1)), (11.10)

dimg (Hy, (I U Ty K)) = dim g (Ker(03 ;) + dimg (Im(95 5,)). (11.11)
Lemma 11.3.11 together with (11.7) guarantees that
dimg (Hy(A; U Ay; K)) < dimg (Hy (I U I; K)). (11.12)

Since Im(d3 1) = Ker(d1 x-1) and Im(03,) = Ker(d; ;_,), Lemma 11.3.12
yields

dimg (Tm(931)) > dim g (Im(95 ). (11.13)

Since Im(0s,1) = Ker(J3 1) and Im(9; ;) = Ker(d; ), it follows from formula
(11.10) and (11.11) together with (11.12) and (11.13) that

dimg (Im(92 1)) < dimg (Im(05 ). (11.14)

Finally, it follows from the reduced Mayer—Vietoris exact sequence of A;
and Ay and that of Iy and I together with (11.9) and (11.10) that

dimg (Hi(A1; K) ® Hp(Ag; K)) < dimg (Hy(I'; K) @ Hy(Iy; K)).  (11.15)

Now we are ready to prove the crucial
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Lemma 11.3.13. Fiz 1 < p < g < n. Let A be a simplicial complex on [n]
and I" = Shift,,(A). Then

Bii+;i(Ia) < Biit;(Ir)
for alli and j.

Proof. Let  be a permutation on [n] with 7(p) < 7(¢). Then 7 naturally
induce the automorphism of S = K[zy,...,z,] by setting z; — 2. Write
7w (A) for the simplicial complex {m(F) : F € A} on [n]. Then

T(Lshiftyq(A)) = IShift, (1) (a) (7(A))-
Thus in particular
Biitj Tshittyg(A)) = Biits (Ishift, (pyr (o (w(A)))-

Consequently, we may assume that ¢ = p + 1.
The right-hand side of Hochster’s formula (11.6) can be rewritten as

Biiti(Ia) = aij(A) +7i;(A) + 0i5(A),

where

a;(A) = > dimg (H;-2(Aw; K)),
WC[n]\{p,q}, |W|=i+j

i (4) = > dimg (Hj—2(Awugpy: K))
Wcn)\{p,q}, |W|=i+j—1

+ > dim g (Hj—2(Awuggy; K)),
wcln\{p,q}, |W|=it+j—-1
62](A> - Z dimK(gj,Q(Awu{pyq}; K))

W [n]\{p,q}, |W|=it+j—2

Let W C [n] \ {p,q}. Then Ay = I'y. Thus «;;(A) = a;;(I"). Since
Dwgp,qy = Shift(Awugp,qy), Lemma 11.3.11 says that 6;;(A) < 0;;(1"). Fi-
nally, it follows from (10) that 7;;(A) < v;;(I"). Hence Biit+;(1a) < Bii+;(Ir),
as desired. O

Lemma 11.3.13 together with the definition of combinatorial shifting now
implies

Theorem 11.3.14. Let the base field be arbitrary. Let A be a simplicial com-
plex and A€ a combinatorial shifted complex of A. Then

Biivi(Ia) < Biivji(Lac)

for alli and j.
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Let A’ be a shifted simplicial complex with the same f-vector as A and
Al** the unique lexsegment simplicial complex with the same f-vector as A.
By Theorem 7.4.3 we have that £,;4;(Ia/) < Biit;(Lawex) for all ¢ and j. Since
A€ is shifted with f(A°) = f(A), it follows that G4 ;(Lac) < Biit;(Latex) for
all 4 and 5. Hence

Corollary 11.3.15. Let the base field be arbitrary. Let A be a simplicial com-
plex and A% the unique lexsegment simplicial complex with the same f-vector
as A. Then

Biiti(Ia) < Biigj(Larex)
for all i and j.

11.4 Extremal Betti numbers and algebraic shifting

In the previous sections we have discussed the comparison of Betti numbers
between a simplicial complex and its shifted complex. For the extremal Betti
numbers this comparison yields the following result.

Theorem 11.4.1. Let A be a simplicial complex and In C Klx1,...,x,] its
Stanley—Reisner ideal, where K is an infinite field which we assume to be of
characteristic 0 in the statements concerning A®.

(a) For alli and j, the following conditions are equivalent:
(i) the ijth Betti number of 1 is extremal;
(ii) the ijth Betti number of Iae is extremal;
(iii) the ijth Betli number of Ias is extremal.
(b) The corresponding extremal Betti numbers of Ia, Ine and Ias are equal.

Proof. In the case of symmetric algebraic shifting the statements in (a) and
(b) are direct consequences of Theorem 4.3.17 and Lemma 11.2.6. For exterior
algebraic shifting they follow from the subsequent considerations. O

Our aim is to relate the extremal Betti numbers of I o with with certain
numerical data of the E-resolution of Jo C E. In order to simplify notation
weset J=Jp I =14 Welet

2521+j E/J

>0
Then Corollary 7.5.2 yields
- :
IOED 30 ) (i L ANCT
i>0 k=0 Jtk-

Setting k(j) = max{k: ﬂ,fkﬂ- (S/I) # 0}, we see that
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R B (S/ (L — )R F 4 R(1)(1 — )M+

P](t) (1 7t)k(])+j )

(11.16)
with a certain polynomial R(t).

We set d;(E/J) = k(j) +j and e;(E/J) = By wiiy1s(S/D)-
Corollary 11.4.2. The following conditions are equivalent:

(a) isiﬂ- (S/I) is an extremal Betti number of S/I;
(b) i =k(j), and djs(E/J) —d;(E/J) < j' —j for all j' > j.

For the further discussion we need a different interpretation of the numbers
d; and e;. To this end we consider Cartan homology. We will use the exact
sequence

— Hi(Vi M) — H;(viM) — Hi_1(v; M)(=1) — Hi_1(v'; M) — (11.17)

of graded E-modules, which by Corollary A.8.4 is attached to any sequence
V =11,...,0,, of elements in E;. Here v/ = vy,...,vp,_1.

Proposition 11.4.3. Let M € G, and let vy, ...,v, be a generic basis of E.
Then the natural maps

Hi(vl,...,vj;M)—> i—l(vl7' .. ,Uj;M)(—l)

arising in the long exact sequence (11.17) of Cartan homology attached to the
sequence v1, . .., v, are surjective for all j =1,...,n and all i > 0.

Proof. Applying the exact functor *Hompg(—, F), Proposition A.8.5 yields the
isomorphisms

Hi('l)l,...,’l)j;M)v = Hi(Ul,...,Uj;Mv)7

and the natural maps H;(vi,...,v;; M) — H;_1(v1,...,v;;M)(—1) induce
maps

H™ vy, oyviMY) — He (v, .. v MY)(=1) (11.18)

in Cartan cohomology. Thus H;(vi,...,vj; M) — H;_1(vy,...,v;; M)(—1) is
surjective for ¢ > 0 if and only if

H o1, 05 MY) — Hi (v, 05 MY) (<1)

is injective for ¢ > 0.

Now we use that H*(v; MV) = H' (v1,...,vp; MY) is a finitely generated
graded module over the polynomial ring Ky, ..., y,] with ith homogeneous
components H'(v; MV), and that the natural map (11.18) is just multiplica-
tion by y;; see Proposition A.8.6. Each of the graded components H(v; M")
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itself is a graded K-vector space. In what follows we disregard this internal
grading since it is of no relevance for the next arguments.

Since v = vy, ..., v, a generic basis of F; it follows from Proposition A.8.7
that yn, ..., y1 is an almost regular sequence on H" (vy, ..., v,; M"). Therefore
the multiplication map

H=YVMY) /(Yoo Yoo ) HIT2 (v MY ) 20
‘( )/ (y Y m)l ( ) (11.19)
Hl(v;MV)/(yn,...,y,jH)HZ_l(V;MV)

is injective for all j =0,...,n — 1 and all ¢ > 0. In particular it follows from
(11.17) that

0— HY(v; MY) —"— Hi(viMV) — Hi(vi,...,v5-1;MY) =0
is exact for ¢ > 0. Thus we see that the ith component of H* (v1, ..., vp—1; M)
and of H*(v; M)/ (y,)H (v; M") coincide for i > 0. By using the long ex-
act sequences (11.17) and the injectivity of the multiplication map in (11.19),
induction on j yields that the ith component of H'(vy,...,v,—;; M) and

of H*(vi M) /(Yn, .- sYn—j+1)H (v; M) coincide for ¢ > 0. This, together
with (11.19), completes the proof. O

We now fix M € G and a generic sequence v = v1,...,v, in Ej. In
order to simplify notation we set H;(k) = H;(v1,...,vg; M) for i > 0 and
Ho(k) = H(M/(v1,...,v5—1)M,v;) for k = 1,...,n. Furthermore we set
H;(0) = 0 for all i. Notice that Hy(k) is not the Oth Cartan homology of M
with respect to vs,..., v, but is the cohomology of M/(v1,...,vk—1)M with
respect to vy as defined in Section 5.1.4. From A.8.4 we obtain immediately
the following long exact sequence of graded E-modules

Ha(k) — Hy(k)(—1) — Hy(k — 1) — Hy(k) — Ho(k)(—1) — 0 (11.20)
- Hi(k —1) = Hi(k) = Hi1(k)(=1) = Hi—y(k— 1) — -

We fix an integer j. By Proposition 11.4.3 there exists an integer iy such
that for all i > ig and all k = 1,...,n the sequences

0 — Hip1(k = D)t1)+j — Hiva (k)14 — Hi(k)ip; — 0 (11.21)

are exact.
Set h¥ = dimg H;(k)itj, and ¢ = hfo for K = 1,...,n. The exact se-
quences (11.21) yield the equations

hie = hipl + hf (11.22)

for all i > ip, and k =1,...,n. It follows from (11.22) that

" t+n—2 t+n—3 7 .
hioﬂ-:( n—1 >cl+( n_9 >C2+"'+<1)0n1+cn forall ¢>0.
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Since (57, ;(M) = h for all i, we see that

}: T En: Ck
5+j (M)t =t i (1 _ t)n_k+1 + Q(t)ﬂ
k=1

i>0
where Q(¢) is a polynomial. Thus a comparison with formula 11.16 yields

Proposition 11.4.4. Let d; = d;(E/J) and e; = e;j(E/J) be defined as
above. Then

dj =n+1—min{k:cy #0} and e; =c, g, 41 = min{k:c; # 0},
where ¢, = dimg Hi, (k)ig+;-

In order to relate the invariants d; and e; to the generalized simplicial
homology modules Hy(k) we need the following

Lemma 11.4.5. Let 1 <1 < n and j be integers. With the notation introduced
the following conditions are equivalent:

(a) (1) Ho(k‘)j =0 fO’I“ k<l, and Ho(l)j 75 0
(ii) Ho(k)j» =0 for all j' > j and all k <1+ j—j'.
(b) For alli > 0 we have
(1) Hz(k)z+j =0 fO’f‘ k <l, and Hl(l)rLJr] 7é 0
(ii) Hi(k)iyjr =0 for all j' > j and all k <14 j — 5.
(¢) Condition (b) is satisfied for some i.
Moreover, if the equivalent conditions hold, then H;(l),+; = Ho(l); for all
12> 0.

Proof. In our proof we will use the following exact sequence
Hl(k‘ - 1)i+j’ — Hi(k)i+j/ — ifl(k)(i,1)+j/ (11.23)
— Hi1(k - 1)(1’—1)+(j’+1)

(a)= (b): We prove (b) by induction on 4. For ¢ = 0, there is nothing to show.
So now let ¢ > 0 and assume that (i) and (ii) hold for ¢ — 1. By (11.23) we
have the exact sequence

Hi(D)ivj — Hi-1(D)i—1)+; — Hi—1(l = 1) -1)+(j+1)-

Since [ =1 <1 +j —(j+1), we have H;_1(l —1)-1)+(j+1) = 0 by induc-
tion hypothesis. Also by induction hypothesis, H;_1(l)(—1)4+; # 0; therefore
H;(l)i+; # 0.

Now let k < [. Then (11.23) yields the exact sequence

Hi(k = 1)iy; — Hi(k)ivj — Hi—1(k)i—1)1-
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By induction hypothesis we have H;_1(k);—1)+; = 0. Now by induction on
k we may assume that H;(k — 1);+; = 0. Therefore H;(k),+; = 0, and this
shows (1).

In order to prove (b)(ii), we let 7/ > j and k < 1+ (§ — j'), and consider
the exact sequence

Hi(k = 1)iyjr — Hi(k)iyy — Hioi(k = 1)1+,

from which the assertion follows by induction on ¢ and k.

(¢)= (a). We show that if the conditions (i) and (ii) hold for ¢ > 0, then
they also hold for ¢ — 1. Therefore backwards induction yields the desired
conclusion.

We begin with the proof of (ii) for ¢ — 1 by induction on k. For k£ = 0, there
is nothing to show. Now let j* > j, and 0 < k <1+ (j — j'), and consider the
exact sequence

Hi(k)ivjr — Hio1(k)i-1)+5 — Hi—1(k = L)1)+ +1)-

Since k—1 < I+j—(j'41) it follows by our induction hypothesis that H;_1(k—
1)(i—1)+(’+1) = 0. On the other hand, by assumption we have H;(k);1; =0,
and hence H;_1(k)(i—1)+;s = 0.

In order to prove (i) for i — 1 we consider the exact sequence

Hi(l = 1)ip; — Hi(Div; — Hica(D -1+ — Hima(l = 1) -1 4 41)-

Since I =1 <1+ j— (5 + 1), we know from (ii) (which we have already
shown for 4 — 1) that H;_1(l —1)(—1)4(j+1) = 0. By our assumption we have
H;(l —1);4+; =0, and hence

Hi1 (D) -1)+5 = Hi(D)it; # 0.

That H;_1(k)i—1)+; = 0 for k < I is proved similarly. This concludes the
proof of the implication (¢)= (a).

In the proof of this implication we have just seen that H,(l);y;
H;_1(1)(i—1)+;- By induction hypothesis we may assume that H;_1(l)—1)+;
Hy(l);, and hence H;(1)i4; = Ho(l);, as desired.

O R IR

A pair of numbers (I, j) satisfying the equivalent conditions of Lemma 11.4.5
will be a called a distinguished pair (for M).

Now we may characterize the extremal Betti numbers of S/I as follows:

Corollary 11.4.6. The Betti number B;;4;(S/I) is extremal if and only if
(n+1—14—3,4) is a distinguished pair for E/J. Moreover, if the equivalent
conditions of Lemma 11.4.5 hold, then B;;4,(S/I) = dimg Ho(n+1—1i—j);.

Proof. We know from Corollary 11.4.2 that (;;4,(S/I) is an extremal Betti
number if and only if d;/(E/J) —d;(E/J) < j' — j for all j* > j. By Proposi-
tion 11.4.4 this condition is equivalent to
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min{k: Hi, (k)io+j0 # 0} > 1+ (j — 5),
where | = min{k: H;,(k)i,+; # 0}. In particular, we have
Hi (k)ig+j» =0 for k<Ii+(j—j).

Thus B;i4+,(S/I) is an extremal Betti number if and only if (I, j) is a distin-
guished pair.

It follows from the definition of d;(E/J) and Proposition 11.4.4 that
l =n+1—14— j. Finally, applying Corollary 11.4.2, Proposition 11.4.4 and
Lemma 11.4.5 we see that

Bii+j(S/I) = e;(E/J) = ¢, = dimg Ho(l);.

We are ready for

Proof (of Theorem 11.4.1(a) (i) < (ii) and (b)). Let v1,...,v, be a generic
basis of F1. By Theorem 5.2.11 we have

dimyg H(K{A}/(v1, ..., ve_1)K{A}, vp)
dimy H(K{A®}/(en_ks2;---sen) K{A}, en_111).

for all ¢ and k. The same holds true for K{A®}. Therefore, since A® = (A°)°,
it follows that

dimg H(K{A}/(v1, ..., vp_1)K{A}, v)
= dimK Hi(K{Ae}/(’Ul, N 7’1}]6,1)K{A6},7)k).

Since by Lemma 11.4.5 these dimensions determine the distinguished pairs,
all assertions follow from Corollary 11.4.6 O

As consequence of Theorem 11.4.1 we obtain (see also Corollary 5.2.12)
the following two results of Kalai:

Corollary 11.4.7. Let A be a simplicial complex and let K be a field. Then
Hi(A; K) = Hy (A% K)  for all .

Moreover if char K = 0, then we also have Hy(A; K) = H;(A%; K).

Proof. Hochster’s formula (Theorem 8.1.1) implies that
Bn—i1n(S/Ir) = dimg Hy(I'; K) (11.24)

for all 4, for a simplicial complex I" on the vertex set [n]. Thus the assertion
follows from Theorem 11.4.1 together with Remark 4.3.14. O



11.5 Superextremal Betti numbers 231

The simplicial homology of a shifted complex is easy to compute because
of the following

Proposition 11.4.8. Let A be a simplicial complex on the vertex set [n] such
that Ia is squarefree strongly stable. Then

dimg Hi(4; K) = |{u € G(Ia)ip2: m(u) = n}]
=|{o € A: dimo =14, ocU{n} ¢ A}

Proof. The first equation follows from (11.24) and Corollary 7.4.2, while the
second equation follows trivially from the definitions. O

Corollary 11.4.9. Let A be a simplicial complex and let K be a field as in
Theorem 11.4.1. Then the following conditions are equivalent:

(a) A is Cohen—Macaulay over K ;
(b) A® (resp. A?) is Cohen—Macaulay;
(¢c) A® (resp. A®) is pure.

Proof. (a) < (b): Since shifting operators preserve f-vectors, it follows that
dim K[A] = dim K[A°] = dim K[A®]. Now Theorem 11.4.1 implies that
projdim K[A] = projdim K[A¢] = projdim K[A?]. Thus depth K[4] =
depth K[A€] = depth K[A®] by the Auslander—Buchbaum theorem; cf. Corol-
lary A.4.3. This shows the equivalence of statements (a) and (b).

(b) < (c): We first observe that Iae as well as Ias is squarefree strongly
stable. This follows from Proposition 5.2.10 and Proposition 4.2.4 together
with Lemma 11.2.5. Thus we have to show that a squarefree strongly stable
ideal I is Cohen—Macaulay if and only if all minimal prime ideals of I have
the same height.

The ideal I is the Stanley—Reisner ideal of a simplicial complex I'. We
denote by IV the Stanley-Reisner ideal of Alexander dual I'V of I'. It is
easily seen that IV is again squarefree strongly stable. Hence it follows from
Corollary 1.5.5 that all minimal prime ideals of I have the same height if
and only if IV is generated in one degree. Corollary 7.4.2 implies that this
is the case if and only if IV has linear resolution, which by Theorem 8.1.9 is
equivalent to saying that I is a Cohen—Macaulay ideal. O

11.5 Superextremal Betti numbers

In this section we give an algebraic proof of a theorem of Bjorner and Kalai
[BK88]. The version presented here is slightly more general than the original
theorem, as it applies to any graded ideal in the exterior algebra (not just to
monomial ideals). Nevertheless the proof follows closely the arguments given
by Bjorner and Kalai in their paper. A non-squarefree version of their theorem
will also be presented.
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Let J C FE be a graded ideal. We set f;_1 = dimg(E/J); for all ¢ > 0,
and call f = (fo, f1,...) the f-vector of E/J. As in Chapter 5 we denote
by HY(E/J) the generalized simplicial cohomology of E/J. We let 3;_; =
dimgx HY(E/J), and call 8 = (8_1, B0, 31 . . .) the (topological) Betti sequence
of E/J. In case J = J for some simplicial complex A, the §; are the ordinary
(topological) Betti numbers of A.

A pair of sequences (f,3) € N§° is called compatible if there exists a
graded K-algebra E/J such that f is the f-sequence and g the Betti sequence
of E/J.

Theorem 11.5.1 (Bjérner and Kalai). Let K be a field. The following
conditions are equivalent:

(a) The pair of sequences (f,3) is compatible.

(b) Set xi = (=1)" 25—, (=1)(fj — B;) for all i. Then
(i) x—1 = 1 and x; > 0 for all i,
(i) B; < XEQI —x; for all 1.

Proof. Choosing a suitable field extension of K, we may as well assume that
K is infinite. We fix a monomial order on F with e; > ey > --- > e,.

(a) = (b): The f-vectors of E/J and E/gin_(J) coincide; see Corol-
lary 6.1.5, where a similar statement is made for graded ideals in the poly-
nomial ring. By Corollary 5.2.12 we have H (E/J) = H'(E/gin_(J)) for all
i. Hence also the Betti sequences of E/J and E/gin_(J) coincide. Thus we
may replace J by gin_(J), and hence may as well assume that J is strongly
stable; see Proposition 5.2.10.

Let J’ be the ideal generated by all u € G(J) with m(u) < n and all
monomials u € E such that u A e, € G(J). Then J’ is again strongly stable
and FEyJ’' C J. By Proposition 11.4.8, the last property implies that

dimg (J'/J); = [{u € G(J)ixa:m(u) = n}| = Bi—1(E/J).
It follows that dimg (E/J'); = fi—1 — Bi—1 for all i. Now we notice that e, is
regular on F/J’, in the sense that the complex
B/ = El] S B
is exact. Therefore for each i we obtain an exact sequence of K-vector spaces
— (B} )i1 = (B )i = (E]T)ix1 — (B/(J' +enE))iv1 — 0, (11.25)

and hence x; = dimg (E/(J' + enE))iy1-

Next we observe that J'/J = (J' 4+ e, E)/(J + e, E) and Ey(J' + e, E) C
J + e, E, so that together with the algebraic version of the Kruskal-Katona
theorem (cf. Theorem 6.4.4) we obtain

Xi + ﬂz = dimg Ez'+1 — dlmK(J + enE)z‘-i-l
S dll’IlK Ei+1 - dlmK El(J/ + enE)l S X(Z)

i—17
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as required.

(b) = (a): The hypotheses imply that x; < X 1 and x; + 6 < (-1 +
6¢_1)(i). Thus the Kruskal-Katona theorem yields an integer m, and lexseg-
ment ideals L C N in the exterior algebra E' = K(ey,...,e,_1) such that
dimg (E/N)it1 = xi and dimg (E/L);11 = x; + B; that for all i.

Now let J C E = K({eq,...,en) be the ideal generated by the elements
in G(L) and all elements u A e, with u € G(N). Moreover we set J' = NE.
Then J'/J = N/L, so

=0+ dimK(E/Jl)i+1.

On the other hand, e, is regular on E/J’, so (11.25) yields

i+1
dimg (E/(J' + emE))iy1 = l+1z 1) dimg (E/J');  (11.27)

for all 4. Thus, since E/(J' + e, F) =2 E'/N, it follows from (11.27) that
dimg (E/J")it1 = dimg (E'/N)ip1 + dimg (E'/N); = xi + Xi-1 = fi = Bi.

This, together with (11.26), implies that dimg (E/J);+1 = f;.

Finally, it is clear from the construction of J that [{u € G(J);42: m(u) =
m}| equals dimg (N/L);4+1 which is 8;. Thus, by Proposition 11.4.8, the as-
sertion follows. O

The Bjorner—Kalai Theorem can be translated into a theorem on superex-
tremal Betti numbers. Let I C S be a graded ideal. We let m be the maximal
integer j such that 3;;(S/I) # 0 for some . In other words, m is the largest
shift in the graded minimal free S-resolution of S/I. It is clear that §;,(S/I)
is an extremal Betti number for all ¢ with §;,,,(S/I) # 0, and that there is
at least one such i. These Betti numbers are distinguished by the fact that
they are positioned on the diagonal {(i,m — i):¢ = 0,...,m} in the Betti
diagram, and that all Betti numbers on the right lower side of the diagonal
are zero. The ring S/I may of course have other extremal Betti numbers not
sitting on this diagonal. The Betti numbers (;,,, i = 0,...,m are called su-
perextremal, regardless of whether they are zero or not. We want to find out
which sequences of numbers (bg, by, ...,b,,) appear as sequences of superex-
tremal Betti numbers for graded rings with given Hilbert function.

Before answering this question we have to encode the Hilbert function
Hg;(t) of S/I in a suitable way. Using the additivity of the Hilbert function,
the graded minimal free resolution of S/I yields the following formula:

ao + a1t + aot? + - - + apt™

(1=tm

Hg/r(t) =
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with a; € Z; see Section 6.1.3. It follows that

ap + ait + ast® + - + apt™
(L=t)m

(1—t)"""Hg(t) =

Notice that n — m may take positive or negative values. At any rate, the
rational function (1 —¢)"~™Hg/;(t) has degree < 0. One easily verifies that
there is a unique expansion

ti
1=y

(1—t)"""Hg/r(t) =Y fia
i=0

with f; € Z. It is clear that f_; = 1, and we shall see later that all f; > 0. We
call f=(f-1,fo,f1,---, fm—1) the f-vector of S/I. Given the highest shift
in the resolution, the f-vector of S/I determines the Hilbert function of S/I,
and vice versa.

We set b; = Bim—i—1,m(S/I) for i =0,...,m, and call b = (b_1,...,bpm_1)
the superextremal sequence of S/I. Finally we set

%

Xi = (=1)" > (=1)(fj —b;) for i=-1,0....,m— 1.

j=—1
The Bjorner—Kalai theorem has the following counterpart.

Theorem 11.5.2. Let K be a field of characteristic 0, and let f = (f-1, fo,
vy fm—1) and b = (b_1,bg,...,b;m—1) be sequences of non-negative integers.
The following conditions are equivalent:

(a) there exists a homogeneous K-algebra S/I such that f is the f-vector, and
b the superextremal sequence of S/I;

(b) (i) x=1 =1 and x; > 0 for all i,
(i) b; < ng_)l — x; for all 1.

Proof. (a) = (b) Let < be the reverse lexicographic order. Since by Theo-
rem 4.3.17 the extremal Betti numbers are preserved when we pass from I
to gin_(I), it follows that I and gin_ (/) have the same highest shift m, and
hence the same b-vector. By Corollary 6.1.5, S/I and S/ gin_ (I) have the same
Hilbert function. Hence it follows that the f-vectors of S/I and S/gin_(I)
coincide. Thus, since char(K) = 0, we may assume that I is a strongly stable
monomial ideal; see Proposition 4.2.6.

The ideal I9 is defined in S" = KJz1,...,%s] and by Lemma 11.2.6 we
have Bi;4;(I) = Bii+;(17). This implies that

Hgiyro(t) = (1 —t)" " Hgy1(2).

Hence, if we let A be the simplicial complex with Io = I9, then A and
S/I have the same f-vector, and the theorem of Hochster (Theorem 8.1.1)
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implies that b; = dimg ffi(A; K). Therefore the conclusion follows from The-
orem 11.5.1.

(b) = (a): Given f- and b-sequences satisfying conditions (b), Theo-
rem 11.5.1 guarantees the existence of an integer m and a simplicial complex
A on the vertex set [m] whose f-vector is f and whose (-sequence is b. Then
Klx1,...,2m]/Ia is a homogeneous K-algebra satisfying (a). O

Problems

11.1. Show that A is shifted if and only if I, is strongly stable.
11.2. Show that Shift;;(A) is a simplicial complex.
11.3. Suppose that Shift;;(A) is pure. Then is A pure?

11.4. Let M, (K) be the set of all n x n-matrices with entries in K. Show that
the restriction map M, (K) — My, (K) given by (ai;)i j=1,n > (@ij)ij=1,--m
is an open map.

11.5. Show by an example that a simplical complex may have different com-
binatorial shiftings.

11.6. Let A be the simplicial complex on [6] whose facets {i,j} are, where
i=1,2,3 and j = 4,5,6. Show that A% #£ A°.

11.7. Give an example that in general (A®)Y # (AY)e.

11.8. Let A be the cycle of length n, i.e. F(A) = {{1,2},{2,3},{3,4},{n —
1,n},{n,1}}. Show that A¢ = A° = A,

11.9. Let A be the simplicial complex on [6] whose facets are {i,j} with
i=1,2,3and j = 4,5,6. Show that A® # A°.

11.10. Give an example of a simplicial complex A which is not lexsegment,
but 6ii+j (IA) = ﬂii—i—j (IA]CX) for all 7 and j

Notes

In classical combinatorics on finite sets, combinatorial shifting [EKR61], intro-
duced by Erdds, Ko and Rado in 1961, was one of the most useful techniques
for studying extremal properties of finite sets. One of the reasons why shifted
complexes are important in combinatorics is that the f-vector of a simplicial
complex and its shifted complex coincide, and in addition, the computation of
f-vectors of a shifted complex is quite easy; see [Kal01]. While Kalai invented
shifting theory for the development of f-vector theory, the algebraic aspects of
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the theory have been stressed more in the papers [HT99], [Her01], [AHHO00a],
[AHO0] and [BNTO06]. One of the basic algebraic problems in shifting theory
is the comparison of the graded Betti numbers of a simplicial complex and its
shifted complex. The comparison of In and I piex, given in Corollary 11.3.15,
was first proved by [AHHO0Oa] under the assumption of char(K) = 0. The proof
of this result in all characteristics presented here uses combinatorial shifting
[MHO09].

The comparison of T4 and Ias for symmetric algebraic shifting is well un-
derstood. Unfortunately, it is not known whether symmetric algebraic shift-
ing can be defined in all characteristics. Also, it is not known whether the
graded Betti numbers of a simplicial complex are bounded by the correspond-
ing graded Betti numbers of the exterior shifted complex. However, it has
been shown [AHHO0O0a] that their extremal Betti numbers coincide; see Theo-
rem 11.4.1.

The Bjorner-Kalai theorem [BKS88] characterizes the possible (f, 3) pairs
of a simplicial complex. This theorem can be interpreted as a statement about
superextremal Betti numbers and also has a symmetric algebraic version, as
presented in Theorem 11.5.2.
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Discrete Polymatroids

Matroid theory is a very active and fascinating research area in combinatorics.
The discrete polymatroid is a multiset analogue of the matroid. Based on
the classical polyhedral theory on integral polymatroids developed in the late
1960s and early 1970s, the combinatorics and algebra of discrete polymatroids
will be studied. In particular, base rings of polymatroids and polymatroidal
ideals are considered.

12.1 Classical polyhedral theory on polymatroids

Fix an integer n > 0 and set [n] = {1,2,...,n}. The canonical basis vectors
of R™ will be denoted by e1,...,¢,. Let R’ denote the set of those vectors
u = (u,...,u,) € R" with each u; > 0, and Z"} = R} NZ". For a vector
u = (ui,...,u,) € R} and for a subset A C [n], we set

i€A

Thus in particular u({¢}), or simply u(i), is the ith component w; of u. The
modulus of u is

fuf = () = 3w

Let u = (u1,...,u,) and v = (v1,...,v,) be two vectors belonging to R} . We
write u < v if all components v; — u; of v —u are nonnegative and, moreover,
write u < v if u < v and u # v. We say that u is a subvector of v if u < v.
In addition, we set

uV v = (max{uy,v1},...,max{un,v,}),

uAv = (min{uy,v1},...,min{u,,v,}).

ThusuAv<u<uVvanduAv<v<uVv.

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 237
DOI 10.1007/978-0-85729-106-6_12, (C) Springer-Verlag London Limited 2011
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Definition 12.1.1. A polymatroid on the ground set [n] is a nonempty
compact subset P in R}, the set of independent vectors, such that

(P1) every subvector of an independent vector is independent;
(P2) if u,v € P with |v| > |ul, then there is a vector w € P such that

u<w<uVv.

A base of a polymatroid P C R”} is a maximal independent vector of P,
i.e. an independent vector u € P with u < v for no v € P. Every base of P
has the same modulus rank(P), the rank of P. In fact, if v and v are bases
of P with |u| < |v|, then by (P2) there exists w € P withu < w < uVwv,
contradicting the maximality of u.

Let P C R” be a polymatroid on the ground set [n]. Let 2" denote the
set of all subsets of [n]. The ground set rank function of P is a function
p: 2" - R, defined by setting

p(A) = max{v(A):v € P}

for all ) # A C [n] together with p(()) = 0.

Given a vector x € R, an independent vector u € P is called a maximal
independent subvector of x if (i) u < x and (ii) u < v < x for no v € P.
Since P is compact, a maximal independent subvector of x € R’ exists.
Moreover, if x € R} and w € P with w < x, then, since {y € P:w <y} is
compact, there is a maximal independent subvector u € P with w < u < x.

If each of u and u’ is a maximal independent subvector of x € R’}, then
[u| = |u|. In fact, if |u| < |u’|, then by (P2) there is u” € P with u < u” <
uVu' < x, contradicting the maximality of u. For a vector x € Ry, we define
&(x) = |u|, where u € P is a maximal independent subvector of x.

Lemma 12.1.2. Let x,y € R". Then

§(x) +£(y) = E(xVy) +E(xAy).

Proof. Let a € P be a maximal independent subvector of x A'y. Since a <
X V' y, there exists a maximal independent subvector b € P of x V y with
a<b<xVy.SincebA(xAy)ePanda<bA(xAy)<xAy,one has
a=DbA (xAy). We claim

a+b=bAx+bAy.

In fact, since b < x V y, one has b(i) < max{x(),y(¢)} for each i € [n]. Let
x(i) < y(i). Then a(i) = min{b(),x(?)} and b(i) = min{b(i),y(i)}. Thus
a(i) +b(i) = (bAx)(i) + (b Ay)(3), as required.

Since b A x € P is a subvector of x and since b Ay € P is a subvector of
y, it follows that |b A x| < £(x) and |b A y| < {(y). Thus
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§xAy)+E(xVy) = la + [b]
=|bAx|+|bAy|
<&(x) +&y),

as desired. O
We now come to an important result of polymatroids.

Theorem 12.1.3. (a) Let P C R} be a polymatroid on the ground set [n] and
p its ground set rank function. Then p is nondecreasing, i.e. if A C B C [n],
then p(A) < p(B), and is submodular, i.e.

p(A) + p(B) = p(AU B) + p(A N B)
for all A, B C [n]. Moreover, P coincides with the compact set
{x e R} :x(A) < p(A), A C [n]}. (12.1)

(b) Conversely, given a nondecreasing and submodular function p : 2" —
Ry with p(0) = 0. Then the compact set (12.1) is a polymatroid on the ground
set [n] with p its ground set rank function.

Proof. (a) = (b): Clearly, p is nondecreasing.

In general, for X C [n] and for y € R, we define yx € Ry by setting
vx(@)=y(),i€e X andyx(i)=0,i€ [n]\X.

Let r = rank(P) and a = (r,7,...,r) € R}. Thus w < a for all w € P.
We claim that, for each subset X C [n], one has

p(X) = ¢&(ax).

To see why this is true, write b for a maximal independent subvector of ax.
Then &(ax) = |b] = b(X) < p(X). On the other hand, if p(X) = w(X),
where w € P, then, since wx < ax, one has p(X) = w(X) = |wx| < {(ax).
Thus p(X) = ().

Let A and B be subsets of [n]. Then p(AU B) = &(aaup) = &(aa V ap)
and p(AN B) = &(vanp) = £(aa A apg). Thus the submodularity of p follows
from Lemma 12.1.2.

Let Q denote the compact set (12.1). It follows from the definition of p
that P C Q. We will show Q C P.

Suppose that there exists v € Q with v &€ P. Let u € P be a maximal
independent subvector of v which maximizes |N(u)|, where

N(u)={i € [n]:u(i) < v(i)}.

Let w = (u+v)/2 € R} and b € P with b(N(u)) = p(N(u)). Since
w € Q, it follows that
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Since [uy(w)| < [by(w)l, there is u’ € P, with uyw) < U’ < uy) V byw)-
Thus uyw) < ' AWy < Wy Hence upy(,) cannot be a maximal in-
dependent subvector of Wy (). Let u” € P with uy@,) < u” be a maximal
independent subvector of Wy (y).

Let u* € P be a maximal independent subvector of w with u” < u*. Since
each of u and u* is a maximal independent subvector of w, one has |u| = |u*|.
However, since u(N(u)) < u”’(N(u)) < u*(N(u)), thereis j € [n]\ N(u) with
u*(j) < u(jy) (= v(y)). Since u*(i) < w(i) < v(i) for all i € N(u), one has
|N(u*)| > |N(u)|. This contradicts the maximality of |N(u)|.

(b) = (a): Let P denote the compact set (12.1). Suppose that there exist
u,v € P with |v| > |u| for which (P2) fails. Let V = {i € [n] : v(¢) > u(i)}.

We claim that, for each ¢ € V, there is a subset A; C [n] with ¢ € A; such
that u(A4;) = p(4;). In fact, if there is ¢ € V with u(A) < p(A) for all subsets
A C [n] with i € A, then for N > 0 the vector w = u+ (1/N)e; belongs to P
and satisfies u < w < uV v, a contradiction.

Now, let A be a maximal subset of [n] with u(4) = p(A). By using the
submodularity of p together with u € P, it follows that

p(AU A;) + p(AN A;) < p(A) + p(A)

AUA;) +u(ANA)
< p(AUA) + p(AN Ay).

Hence there must be equality throughtout, so that u(AU A;) = p(AU A;).
Then, by the maximality of A, one has A; C A. In particular i € A for

all i € V. Thus V C A. Hence p(A4) = u(A) < v(A). This contradicts v € P.

Hence (P2) holds. O

We refer the reader to Appendix B for basic material on convex polytopes.
A sketch of the proofs of Theorems 12.1.4 and 12.1.5 is given in Appendix B.

It follows from Theorem 12.1.3 (a) that a polymatroid P C R’ on the
ground set [n] is a convex polytope in R™. In addition, the set of bases of P
is a face of P with supporting hyperplane

{x=(z1,...,2,) €R™ ZI’ = rank(P)}.

i=1

How can we find the vertices of a polymatroid? We will associate any
permutation m = (i1, ...,i,) of [n] with AL = {i;}, A2 = {iy,iz},..., A7 =

(i1, ..., in}.

Theorem 12.1.4. Let P C R?} be a polymatroid on the ground set [n] and
p its ground set rank function. Then the vertices of P are all points v =
v(k,m) € R}, where v = (v1,...,v,) and
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vi, = p(AY) — p(AEY),

Viggr = Viggo = *°° = Vi, = 0,

and k ranges over the integers belonging to [n], and 7 = (i1,...,in) ranges
over all permutations of [n]. In particular the vertices of the face of P con-
sisting of all bases of P are all points v =v(n,n) € R}, where m ranges over
all permutations of [n].

We say that a polymatroid is integral if all of its vertices have integer
coordinates; in other words, a polymatroid is integral if and only if its ground
set rank function is integer valued.

Let P, ..., P be polymatroids on the ground set [n]. The polymatroidal
sum Py V.-V Py of Py,..., Py is the compact subset in R’} consisting of all
vectors x € R’} of the form

k

x:in, x; € P;.

i=1

Theorem 12.1.5. Let Py, ..., Py be polymatroids on the ground set [n] and
pi the ground set rank function of P;, 1 <1 < k. Then the polymatroid sum
P1V-- VPy is a polymatroid on [n] and Zle pi 18 its ground set rank function.
Moreover, if each P; is integral, then Py V ---V Py is integral, and for each
integer vector x € P1V ---V Py there exist integer vectors x; € P;, 1 <i <k,
with x = Zle X;.

12.2 Matroids and discrete polymatroids

A few examples and basic properties of matroids and discrete polymatroids
will be discussed. We begin with

Definition 12.2.1. A discrete polymatroid on the ground set [n] is a
nonempty finite set P C Z"} satisfying

(D1)ifu e P and v € Z7} with v <u, then v € P;
(D2) if u = (u1,...,u,) € P and v = (vy,...,v,) € P with |u| < |v|, then
there is ¢ € [n] with u; < v; such that u+¢; € P.

A base of a discrete polymatroid P C Z is a vector u € P such that
u < v for no v € P. Let B(P) denote the set of bases of P. It follows from
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(D2) that if u and v are bases of P, then |u| = |v|. The nonnegative integer
|u| with u € B(P) is called the rank of P.

Let 2I" denote the set of all subsets of [n]. We associate each F' C [n] with
the (0, 1)-vector wp = (w1, ..., wy,), where w; = 1 if i € F' and where w; =0
if i ¢ F. A matroid on the ground set [n] is a subset M C 2["] such that
{wp : F € M} is a discrete polymatroid on [n]. Note that a matroid M is
a simplicial complex with the property that for all faces F and G in M with
|F| < |G|, there exists i € G\ F such that F U {i} € M.

Ezample 12.2.2. (a) Let vq,. .., v, be vectors of a vector space. Let M denote
the subset of 2["] consisting of those F' C [n] such that the vectors vj with k €
F' are linearly independent. A fundamental fact on linear algebra guarantees
that M is a matroid. Such a matroid is called a linear matroid.

(b) Let G be a finite graph with the edges e1,...,e,. Let M denote the
subset of 2" consisting of those F C [n] such that the subgraph of G whose
edges are e, with k € F is a forest. It follows that M is a matroid. Such a
matroid is called a graphical matroid.

Lemma 12.2.3. Let P be a discrete polymatroid.

(a) Let d < rank P. Then the set P’ = {u € P:|u| < d} is a discrete polyma-
troid of rank d with the set of bases {u € P: |u| = d}.
(b) Suppose that d = rank P. Then for each x € P the set

Pi={v—-x:vePv>x}
is a discrete polymatroid of rank d — |x|.

Proof. (a) Let u,v € P with d > |v| > |u|. There exists w € P such that
u<w <uVv. Since w > u, and since P contains all subvectors of w, there
exists an integer ¢ such that u+¢; < w. Then u < u+¢; <uV v, and since
u+ ¢; <d, it belongs to P’. This proves that P’ is a discrete polymatroid. It
is clear that {u € P:|u| = d} is the set of bases of P’.

(b) Let u’,v’ € P with [v/| > |u/|, and set u = u’ +x and v = v/ + x.
Then u,v € P and |v| > |u|. Hence there exists w € P withu <w <uVwv.
Set w =w—x. Thenw € P, andu' <w <u' Vvv. a

Discrete polymatroids can be characterized in terms of their sets of bases.

Theorem 12.2.4. Let P be a nonempty finite set of integer vectors in R’}
which contains with each u € P all its integral subvectors, and let B(P) be
the set of wvectors u € P with u < v for no v € P. Then the following
conditions are equivalent:

(a) P is a discrete polymatroid;
(b) if u,v € P with |v| > |u|, then there is an integer i such that u+¢; € P
and
u+e¢ <uVvvg
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(¢) (i) all u € B(P) have the same modulus,
(ii) (The exchange property) if u,v € B(P) with u(i) > v(i), then
there exists j with u(j) < v(j) such that u —¢; +¢; € B(P).

Proof. (a) = (b): Already shown in the proof of Lemma 12.2.3.

(b) = (a): Obvious.

(b) = (c): We have already noted that (c)(i) holds. Thus it remains to
prove (c)(ii). Let u,v € B(P) with u(i) > v(i) for some i. Then u(i) — 1 >
v(i), and hence |u —¢;| = |[v| — 1 < |v|. Thus by (b) there exists an integer
j such that (u—¢;) +¢€ < (u—¢)Vv. We have j # 4, because otherwise
u(i) = (u—e; +¢€;)(i) <max{u(z) —1,v(i)} = u(i) — 1; a contradiction. Thus
u(j) + 1= (u— e +6)(j) < max{u()), v(j)} < v(j), that is, v(j) > u(j).

(c) = (b): Let v,u € P with |v| > |u|, and let w' € B(P) with u < w’.
Since all w' € B(P) have the same modulus, it follows that |[v| < |w’|.
Thus we can choose a subvector w of w' in P with u < w and |w| = |v|.
Let P/ = {x € P:|x| < |v|}. Later, in Lemma 12.2.5, we will show that
P’ possesses the property (c). In particular, w and v satisfy the exchange
property (c)(ii).

Suppose that w(j) < max{u(j),v(j)} for all j. Since u(j) < w(j) for all
Jj, it follows that w(j) < v(j) for all j. However, since |w| = |v|, this implies
w = v. Then u < v, and the assertion is trivial.

Now assume that there exists an integer j such that w(j)> max{u(j), v(j)}
Then by the exchange property, there exists an integer ¢ with v(#) > w() such
that w —¢; +¢; € P. Since u+¢; is a subvector of w — ¢; 4 ¢;, it follows that
u+¢; € P. Furthermore we have (u+¢;)(7) = u(i) +1 < w(i) + 1 < v(i), so
that u+¢ <uVvwv. |

Lemma 12.2.5. Let P be a nonempty finite set of integer vectors in R’ which
contains with each u € P all its integral subvectors. Let B(P) denote the set
of vectors u € P withu < v for nov € P and suppose that allu € B(P) have
the same modulus (say, = r) and that B(P) satisfies the exchange property.
Let P' = {x € P:|x| < d}, where d <r, and B(P') the set of vectors u € P’
with w < v for no v € P'. Then all u € B(P') have the same modulus and
that B(P) satisfies the exchange property.

Proof. By using the inductive argument, we assume that d = r — 1. Since all
u € B(P) have the same modulus, it follows that all u € B(P’) have the same
modulus. Let u,v € B(P’). One hasu’' =u+e¢, € B(P)and v =v +¢, €
B(P) for some a and b. If a = b, then clearly u and v satisfies the exchange
property. We thus assume that u + ¢, ¢ B(P). Let u(ip) > v(ip). What we
must prove is that there is jo with u(jo) < v(jo) such that u+¢;, € B(P).
In fact, if u+¢;, € B(P), then u —¢;, +¢;, € B(P').

Suppose that for each ¢ with u(c) < v(c) one has u +¢e. ¢ B(P). In
particular, since u + ¢, € B(P), one has u(a) > v(a). Hence u’(a) > v'(a).
Thus there is k with u’(k) < v/(k) such that u’ — ¢, + ¢, € B(P). In other
words, u + ¢, € B(P). Thus u(k) > v(k). Since u'(k) < v'(k), one has
u(k) = v(k) and k = b. Hence u+ ¢, € B(P); a contradiction. O
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We define the distance between u and v, where u,v € B(P), by

dis(u, v) Z|u

A crucial property of dis(u, v) is that if u(é) > v(i) and u(j) < v(j) together
with u’ = u —¢; +¢; € B(P), then dis(u,v) > dis(u’, v).

Proposition 12.2.6. Work with the same situation as in Theorem 12.2.4
and suppose that the condition (c) is satisfied. Then, for u,v € B(P) with
u(i) < v(i), there exists j with u(j) > v(j) such that u+¢; —¢; € B(P).

Proof. Fix i with u(¢) < v(j). If there is k1 # ¢ with u(ky) < v(k1), then
there is ¢; with u(¢1) > v(¢1) such that wiy = v — €, + €, € B(P). Then
w(i) = v(i) and dist(u, wy) < dist(u, v). Again, if there is ko # ¢ with u(ks) <
w1 (k2), then there is £5 with u(f3) > wy(f2) such that wo = wy — €, + €4, €
B(P). Then wy(i) = va(i) and dist(u, wy) < dist(u,w;). Repeating these
procedures yields w* € B(P) with w*(i) = v(i) > u(i) and w*(j) < u(yj) for
all j # 4. One has jo # ¢ with w*(jo) < u(jo). Then by the exchange property
it follows that u —€j, +¢; € B(P), as desired. O

Proposition 12.2.7. Let P be a nonempty finite set of integer vectors in R’}
which contains with each u € P all its integral subvectors. Then the following
conditions are equivalent:

(a) P is a discrete polymatroid of rank d on the ground set [n];
(b) B = {(u,d — |u|):u € P} is the set of bases of a discrete polymatroid of
rank d on the ground set [n + 1].

Proof. (a)= (b): We will show that B satisfies condition (c) of Theorem 12.2.4.
Let u,v € P,i=d—|u|, j =d—|v] and set u’ = (u,4) and v/ = (v,j). We
may suppose that |v| > |u|, so that j < 4. If i = j, then u and v are bases
of P/ = {w € P:|w| < d — i}, see Lemma 12.2.3. Thus u’ and v’ satisfy the
exchange property, and hence we may assume that j < i. We consider two
cases.

In the first case assume that v/(k) > u'(k) for some k. Then k < n, and
v — € € P, since v — ¢, is a subvector of v, and so v/ — € + €,41 € B.

In the second case assume that u'(k) > v/(k) for some k. Since |v| >
|u|, Theorem 12.2.4 (b) guarantees that there exists an integer ¢ such that
u+e € Pand u+e¢ < uAv. It follows that u(/) < u(?) +1 < v(¥).
If K < n, then u— ¢, + ¢, € P, because it is a subvector of u — ¢;. Hence
u —ep+e = (u—ek—i—eg, ;) € B. On the other hand, if k¥ = n + 1, that is,
u'(k) =14, then v’ — e + ¢, = (u+¢€,7— 1) € B, because u+ ¢, € P.

((b) = (a)) Let u,v € P with |v| > |u|. Then d — |v| < d — |u], and so by
the exchange property of B there exists an integer ¢ with v(i) > u(4¢) and such
that (u+¢;,d — |u|) € B. This implies that u+¢; € P, and since v(i) > u()
we also have that u +¢; <uAwv. O
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As a consequence of Theorem 12.2.4, a matroid can be characterized by
the following exchange property: a pure simplicial complex M is a matroid,
if and only if for any two facets F' and G of M with F' # G, and for any
i € F'\ G, there exists j € G\ F such that F'\ {i} U {j} € M.

Ezample 12.2.8. Fix positive integers dy,...,d, and d with dy +---+d,, > d.
Let P C Z7 be the set of vectors u € Z% with u(i) < d; forall1 <i <n
and with |u] < d. Then P is a discrete polymatroid on [n]. Such a discrete
polymatroid is called a discrete polymatroid of Veronese type.

To see why P is a discrete polymatroid, we use Theorem 12.2.4. Let B(P)
be the set of vectors u € P with u < v for no v € P. Thus u € P belongs
to B(P) if and only if |u| = d. What we must prove is that B(P) possesses
the exchange property. Let u,v € B(P) with u() > v(7). Since |u| = |v| = d,
it follows that there is j with u(j) < v(j). Clearly, u — ¢; +¢; € P. Thus
u—¢; +¢; € B(P), as desired.

12.3 Integral polymatroids and discrete polymatroids

We will establish our first fundamental Theorem 12.3.4, which says that a
nonempty finite set P C Z7 is a discrete polymatroid if and only if Conv(P) C
R” is an integral polymatroid with Conv(P)NZ" = P. Here Conv(P) is the
convex hull of P in R™.

First of all, we collect a few basic lemmata on integral polymatroids and
discrete polymatroids which will be required to prove Theorem 12.3.4.

Lemma 12.3.1 can be proved by imitating the proof of (b) = (a) of Theo-
rem 12.1.3. However, for the sake of completeness, we give its proof in detail.

Lemma 12.3.1. If P C R is an integral polymatroid and if u,v € PNZ"
with |v| > |u|, then there is w € PNZ™ such thatu < w <uVv.

Proof. Suppose, on the contrary, that no w € PNZ" satisfiesu <w <uVv.
Let V.= {i € [n] : v(i) > u(i)}. We claim that, for each i € V, there is a
subset A; C [n] with ¢ € A; such that u(A4;) = p(A;). In fact, if there isi € V
with u(A) < p(A) for all subsets A C [n] with ¢ € A, then the integer vector
w = u+ ¢; belongs to P and satisfies u < w < u V v, a contradiction.

Now, let A be a maximal subset of [n] with u(A) = p(A). By using the
submodularity of p together with u € P, it follows that

p(AU A;) + p(AN A;) < p(A) + p(4)

AUA)+u(An4,)
<p(AUA;) +p(ANA).

Hence there must be equality throughout, so that u(AU 4;) = p(AU A;).
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Then the maximality of A guarantees that A; C A. Thus in particular
i € Afor all i € V. In other words, V' C A. Hence p(A) = u(A) < v(A). This
contradicts v € P. O

Let P C Z% be a discrete polymatroid and B(P) the set of bases of P. We
define the nondecreasing function pp: 2l — R, associated with P by setting

pp(X) = max{u(X):u € B(P)}
for all ) # X C [n] together with pp(0) = 0.

Lemma 12.3.2. If X; C X5 C --- C X, C [n] is a sequence of subsets of [n],
then there is u € B(P) such that u(Xy) = pp(Xy) for all1 <k < s.

Proof. We work with induction on s and suppose that there is u € B(P
such that u(Xy) = pp(Xy) for all 1 < k < s. Choose v € B(P) with v(X,) =
pp(Xs). Ifu(X;) < v(Xs), then there is i € [n] with i € X such that u({i}) >
v({i}). The exchange property 12.2.4 (c) (ii) says that there is j € [n] with
u(j) < v(j) such that uy = u—e¢;+¢; € B(P). Since u(X;_1) = pp(Xs—1), it
follows that j ¢ X,_1. Hence uy(X%) = pp(Xy) for all 1 < k < s. Moreover,
up (X;) > u(X;) and dis(u, v) > dis(ug, v).

If u;(X;,) = v(X,), then uy is a desired base of P. If uy(X;) < v(Xy),
then the above technique will yield a base ug of P such that us(Xy) = pp(X%)
forall 1 <k < s, ua(X;) > ui(Xs) and dis(uy, v) > dis(ug, v). It is now clear
that repeated applications of this argument guarantee the existence of a base
u, of P such that u,(Xy) = pp(Xy) forall 1 <k <s. O

Corollary 12.3.3. The function pp: 2™ — R, is submodular.

Proof. Let A, B C [n]. By Lemma 12.3.2 there is u € B(P) such that u(A N
B) =pp(AN B) and u(AU B) = pp(A U B). Hence

pp(A) + pp(B) = u(A) +u(B)
(AUB)+u(ANB)

pp(AUB)+pp(ANB),

u
u

as desired. O
‘We now come to our first fundamental

Theorem 12.3.4. A nonempty finite set P C Z'} is a discrete polymatroid if
and only if Conv(P) C R} is an integral polymatroid with Conv(P)NZ™ = P.

Proof. The “if” part follows from Lemma 12.3.1. To see why the “only if”
part is true, let P C Z"} be a discrete polymatroid and pp: 2l R, the
nondecreasing and submodular function associated with P. Write P C R} for
the integral polymatroid with pp its ground set rank function, i.e.
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P={ueR}:u(X)<pp(X), X C[n]}.

Since each base u of P satisfies u(X) < pp(X) for all X C [n], it follows that
P C P. Moreover, since P is convex, one has Conv(P) C P. Now, Lemma
12.3.2 together with Proposition 12.1.4 guarantees that all vertices of P belong
to P. Thus P = Conv(P).

To complete our proof we must show P NZ" = P. For each i € [n], write
P; C Z% for the discrete polymatroid P, in the notation of Lemma 12.2.3 (b)
and B; = B(F;), the set of bases of P;. We compute the nondecreasing and
submodular function pp,: 2["] — R, associated with P;. We distinguish three
cases:

(a) Let i ¢ X C [n] with pp(X U {i}) > pp(X). Choose u € B(P)
with u(X) = pp(X) and with (X U {i}) = pp(X U {i}). Then u(i) =

uw(XU{i})—u(X) > land u € B(P). Since i ¢ X, one has (u—¢;)(X) = u(X).
Since (u—¢;)(X) < pp,(X) < pp(X) = u(X), it follows that pp, (X) = pp(X).
(b) Let i ¢ X C [n] with pp(XU{i}) = pp(X). If u € B(P) with u(i) > 1,

then
(u—e&)(X) < (u—e)(XU{i})

—u(XU{i}) -
< pp(XU{i}) —1=pp(X) -1

Thus pp (X) < pp(X) — 1. Choose v € B(P) with v(X) = pp(X). Then
v(i) = 0. (Otherwise, since i € X, pp(X U{i}) > v(XU{i}) = ( )+v(i) >
v(X) = pp(X); a contradlctlon) Let ug € B(P) with ug(i) > 1. Then the
exchange property says that there is j € [n] with ug(j) < v(j) such that
ug — € + ¢; € B(P). Thus we assume ug(i) = 1. If up(X) < v(X) — 1, then
(X U{i}) = up(X)+1 < v(X) = v(X U{i}). Thus there is j & X U {i}
with ug(j) > v(j). Hence there is i # k € [n] with ug(k) < v(k) such
that wy = ug —¢; + ¢ € B(P). Then ui(z) = 1, ui(X) > ug(X) and
dis(ug, v) > dis(uy, v). Thus, as in the proof of Lemma 12.3.2, we can find
u € B(P) with u(i) = 1 such that u(X) = (u — ¢)(X) = v(X) — 1. Hence
pr,(X) = pp(X) - 1.

(c) Let ¢ € X C [n]. Then pp,(X) = pp(X) — 1. In fact, since i € X,
by Lemma 12.3.2 there is u € B(P) with u(i) = pp({i}) > 1 and with
u(X) = pp(X). Then (u—¢)(X) =pp(X) — 1.

Let P; C R’ denote the integral polymatroid with pp, its ground set rank
function. Then P; = Conv(F;) and, working with induction on the rank of P
enables us to assume that P, NZ" = P;. If x € P NZ" with x(i) > 1, then
y = x—¢; belongs to P;. (In fact, if i ¢ X C [n] with pp,(X) = pp(X)—1, then
pp(XU{i}) = pp(X). Thus replacing u with x in the inequalities (u—e¢;)(X) <

-+ = pp(X) — 1 appearing in the discussion (b) shows that y(X) < pp,(X).)
Thus y € P, NZ™ = P,. Hence y < u — ¢; for some u € B(P) with u(i) > 1.
Thus x <u € B(P) and x € P. Hence P NZ" = P, as desired. O
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12.4 The symmetric exchange theorem

We now establish our second fundamental theorem on discrete polymatroids,
which is the symmetric exchange theorem.

Theorem 12.4.1. If u = (ay,...,a,) and v = (by,...,b,) are bases of a
discrete polymatroid P C 77, then for each i € [n] with a; > b; there is
J € [n] with a; < bj such that both u — €; +€; and v — €; + €; are bases of P.

Proof. Let B’ denote the set of those bases w of P withuAv<w<uVv.
It then turns out that B’ satisfies the exchange property 12.2.4 (c) (ii) for
polymatroids. Thus B’ is the set of bases of a discrete polymatroid P’ C Z}.
Considering ' = u—uAv and v = v — u A v instead of u and v, we will
assume that P’ C 73 is a discrete polymatroid, where s < n, and

u=(a,...,ar,0,....0)€Z5, v=0(0,...,0,b11,...,bs) € Z5,

where each 0 < a; and each 0 < b; and where |u| = |v| = rank(P’). Our work
is to show that for each 1 < i < r there is r + 1 < j < s such that both
u—e¢;+¢; and v —¢; + ¢; are bases of P'. Let, say, i = 1.
First case: Suppose that u — e; + ¢; are bases of P’ forall r+1 < j <s. It
follows from the exchange property that, given arbitrary r integers af,...,a.
with each 0 < a} < a;, there is a base w’ of P’ of the form

w' = (a},...,a., b ..., b)),

where each b; € Z with 0 < b;- < b;. Thus in particular thereis r+1 < jo <'s
such that v —€;, + €1 is a base of P’. Since u—€; +¢; is a base of P’ for each
r+1<j<s,bothu—e +e¢;, and v — ¢, + €1 are bases of P’, as desired.

Second case: Let r > 2 and r+2 < s. Suppose that there is r+1 < j < s with
u—ei+e; & P'.Let X C {r+1,..., s} denote the set of those r+1 < j < s with
u—e; +¢€; € P'. Recall that Theorem 12.3.4 guarantees that Conv(P’) C R3.
is an integral polymatroid on the ground set [s] with Conv(P’) N Z* = P’.
Let p = pps denote the ground set rank function of the integral polymatroid
Conv(P’) C R5.. Thus p(Y) = max{w(Y):w € B’} for ) # Y C [s] together
with p(@)) = 0. In particular p(Y) =u(Y) if Y C {1,...,r} and p(Y) = v(Y)
fYy c{r+1,...,s}

For each j € X, since u — €; +¢; ¢ Conv(P’), there is a subset A; C
{2,3,...,r} with

p(A; U (7)) < u(4y).

Thus
p({2,3,...,r} U{j}) < p(A; U{5}) +p({2,3,. .., 7} \ 4j)
<u(4;)+u{2,3,...,7}\ 4;)
=u({2,3,...,r}) =p({2,3,...,7}).
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Hence, for all j € X,
p({2,3,...,r}U{j}) =u({2,3,...,7}).
By using Lemma 12.4.2 below, it follows that
p({2,3,...,r}UX) =u({2,3,...,71}).
Now, since p is submodular,

p({2,3,...,7}UX)+ p{1}UX) > p(X)+ p({1,2,...,7} UX)
v(X) + rank(P").

Thus
u({2,3,...,7}) + p({1} U X) > v(X) + rank(P").

Since

rank(P’) —u({2,3,...,7}) = a1, and
p({1} U X) < p({1}) + p(X) = a1 + v(X),
it follows that
P({1}UX) = a1 + v(X).
Hence, for all X’ C X,

a1 +v(X)=a +v(X')+v(X\X')
= p({1}) + p(X') + p(X \ X)
> ({1} UX') + p(X \ X)
> ({1} UX)
= a1 + v(X).

Thus, for all X’ C X,
({1} UXT) = ay +v(X).

By virtue of Lemma 12.3.2 there is a base w of P’ with w(1) = a; and
with w(j) = v(j) (= p({j})) for all j € X. Again the exchange property
(for w and v) guarantees that for each 1 < ¢ < r with w(i) > 0 there is
je{r+1,...,s}\ X such that w — ¢; + ¢; is a base of P’. Hence repeated
applications of the exchange property yield a base of w’ of P’ of the form
w' =V —¢j, + €1, where jo € {r+1,...,s} \ X. Hence both u —¢; +¢;, and
v — €, + €1 are bases of P/, as required. a

Lemma 12.4.2. We work with the same situation as in the proof of Theo-
rem 12.4.1. Suppose that p({2,3,...,r}U{j}) = p({2,3,...,7}) forallj € X.
Then p({2,3,...,r}UX) = p({2,3,...,7}).
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Proof. We proceed with induction on |X|. Clearly, the assertion is true if
|X| = 1. Now, let |X| > 1 and fix jo € X. Let Z = {2,3,...,7}. Then, by
using the assumption of induction, one has

p(Z) + p(Z)
= p(Z U (X \{jo})) + p(Z U {jo})
> p((ZU (X \{4o}) U(ZU{jo})) + p((Z U (X \ {jo})) N (ZU{jo}))
=p(ZUX)+p(Z)

> p(Z) + p(2).

Since the first and last lines of the above are equal, it follows that equality
must hold throughout. Hence p(Z U X) = p(Z), as desired. O

12.5 The base ring of a discrete polymatroid

Let P be a discrete polymatroid of rank d on the ground set [n] with set of
bases B = B(P). Let, as usual, S = KJz1,...,z,] denote the polynomial
ring in n variables over a field K. For each basis u € B we write x" for the
monomial xu( ). 24 of §. The base ring of P is the toric ring K[B] which
is generated by those monomials x" with u € B. Since all the bases of P have
the same modulus, it follows that K[B] possesses a standard grading with

each degx" = 1.
Theorem 12.5.1. The base ring of a discrete polymatroid is normal.

Proof. Let P be a discrete polymatroid on [n] with set of bases B = B(P). Let
P = Conv(P) C R™ and Q = Conv(B) C R™. Then by using Theorem 12.3.4
together with the fact that the Q is the face of P, it follows that B = QNZ"™.
Now, by virtue of Lemma B.6.1, in order to show that K[B] is normal what
we must prove is that Q possesses the integer decomposition property,
i.e. if w € Z" belongs to ¢Q = {qv : v € Q}, where ¢ € Z, then there are
uy,...,u, belonging to B such that w =u; +--- 4+ u,.

Since gP = PV --- V P (q times), Theorem 12.1.5 guarantees that P
possesses the integer decomposition property. Since Q is a face of P, it follows
easily that Q possesses the integer decomposition property. a

As a consequence of Hochster’s theorem (Theorem B.6.2) we obtain
Corollary 12.5.2. The base ring of a discrete polymatroid is Cohen—Macaulay.

Let, in general, P C R™ be an integral convex polytope of dimension n
which possesses the integer decomposition property. The toric ring K[P] of
P is a subring of K[z1,...,z,,t] which is generated by those monomials x"¢
with u € P NZ". Since K[P] is normal and is Cohen—Macaulay (Theorem
B.6.2), it would be of interest when K[P] is Gorenstein. Let § > 0 denote
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the smallest integer for which §(P \ 9P) N Z"™ # (). Here P is the boundary
of P and P\ 9P is the interior of P. The canonical module 2(K[P]) of
K[P] is isomorphic to the ideal of K[P] generated by those monomials x"¢9
with u € ¢(P \ 9P) N Z"™ (Theorem B.6.3). Note that K[P] is Gorenstein if
and only if 2(K[P]) is a principal ideal; see Corollary A.6.7. In particular,
if K[P] is Gorenstein, then §(P \ OP) must possess a unique integer vector.
Suppose that §(P \ OP) possesses a unique integer vector, say w* € Z",
and let @ = 6P —w* = {w —w* : w € 0P}. Thus Q@ C R" is an integral
convex polytope of dimension n and the origin of R" is a unique integer vector
belonging to the interior @\ 9Q of Q. Then K[P] is Gorenstein if and only if
the following condition is satisfied:

(#) If the hyperplane H C R™ determined by a linear equation Y- ; a1z; = b,
where each a; and b are integers and where the greatest common divisor
of ay,...,an,b is equal to 1, is a supporting hyperplane of Q such that
H N Q is a facet of Q, then b is either 1 or —1.

We give a sketch of a proof of the above criterion for K[P] to be Gorenstein.
Since K[P] is Gorenstein if and only if 2(K[P]) is generated by x™ t9, it
follows that K[P] is Gorenstein if and only if

W'+ qPNZ" = (q+0)(P\OP)NZ", ¢>1. (12.2)

First, assuming (§) yields that the linear equation of a supporting hyper-
plane which defines a facet of P is of the form

5§n:aizi =1 —|—§n:aiwf, (12.3)
i=1 i=1

where w* = (wj,...,w}). Since P is integral, the equation (12.3) pos-
sesses an integer solution. Hence 1 + Y7 | a;w; is divided by ¢. Thus if
u = (uy,...,u,) € Z" satisfies

52%% (g+9) 1+Zaw

i=1
then
5Zazu,_ (g+9) 1—|—z:az — 9.
=1
Hence

52%(%‘ —w}) < q(l—i—Zaiwl)
i=1 i=1

In other words,

(q+0)(P\OP)NZ" Cw* +qPNZ". (12.4)
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Since the opposite inclusion of (12.4) is obvious, one has (12.2) and K[P] is
Gorenstein.

Second, if K[P] is Gorenstein, then 2(K[P]) is generated by w*#’. It then
follows immediately that 2(K[6P]) is generated by w*t°. Hence K[§P] is
Gorenstein. Since K[Q] ~ K[éP], the toric ring K[Q] is Gorenstein. Thus
2(K[Q)) is generated by ¢. In other words,

q(Q\9Q)NZ" = (¢—1)QNZ", ¢=>1. (12.5)

A geometric observation easily says that (12.5) is equivalent to (f). Hence the
condition (f) is satisfied, if K[P] is Gorenstein, as desired.

We now turn to the problem when the base ring of a discrete polymatroid
is Gorenstein. To obtain a perfect answer to this problem seems, however,
quite difficult. In what follows we introduce the concept of “generic” discrete
polymatroids and find a characterization for the base ring of a generic discrete
polymatroid to be Gorenstein.

Let P C Z7 be a discrete polymatroid of rank d and B = B(P) the set of
bases of P. We will assume that the canonical basis vectors €1, ...,€, of R”
belong to P. Let F = Conv(B), the set of bases of the integral polymatroid
P = Conv(P) C R. Recall that F is a face of P with the supporting hyper-
plane Hp,; C R", i.e. F = H,) NP. Let p: 2" — R, denote the ground set
rank function of P. Then

F={uecHypNZ:u(A) <p(A),0#AC [n],A# n]}.
Let o: Hppyp — R™! denote the affine transformation defined by

Qp(ula"'aun) = (ula"'vun—l)~

Thus ¢ is injective and p(H},) NZ") = Z"~*. Since for all A C [n] withn € A
and A # [n] the hyperplane ¢(H N'Hf,)) C R is determined by the linear
equation Y, ¢\ 4 @i = d — p(A), it follows that

o(F) = {u e R+ d— p(In] \ 4) < u(A) < p(4), 0 £ A C [n— 1]},

We say that P is generic if

(G1) each base u of P satisfies u(é) > 0 for all 1 <4 < n;

(G2) F = Conv(B) is a facet of P = Conv(P);

(G3) FN'Ha is a facet of F for all ) # A C [n] with A # [n].

It follows that P is generic if and only if

(i) p is strictly increasing;

(ii) dimp(F) =n—1,

(iii) the facets of @(F) are all {u € ¢(F) : u(A) = p(A) } together with all
{ue p(F):uld) =d—p(n]\ A)}, where A ranges over all nonempty
subsets of [n — 1].
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Ezample 12.5.3. (a) Let n = 2 and let ay,az > 0 be integers. Let P C Z3
denote the discrete polymatroid of rank d consisting of those u = (uy,us) €
Zi such that u; < ay, us < ag and u; +us < d. Then P is generic if and only
ifa; < d, as < d, and d < a; + as. If P is generic, then the bases of P are
(a1,d —ay), (a1 —1,d — a1 +1),...,(d — ag, az). Thus the base ring K[B] of
P is Gorenstein if and only if either a1 + as =d+ 1 or a; +as =d+ 2.

(b) Let n = 3. Let P C Z3 be a discrete polymatroid of rank d with B its
set of bases, and p the ground set rank function of the integral polymatroid
Conv(P) C R3. Then p(F) C Z%, where F = Conv(B), consists of those
u = (u1,u2) € R% such that

d—p({1,3}) < us < p({2}),
<up +up < p({1,2}).

Hence P is generic if and only if

0 <p({i}) <p({i,j}) <d, 1<i#j<3,
p({i}) +p({7}) > p({i,j}), 1 <i<j<3,
p({i,3}) + p({4, k}) > d+ p({5}), {5k} = [3].

Moreover, if P is generic, then the base ring K[B] is Gorenstein if and only if

p({i}) +p({4; k}) = d+2, {i,j,k} = [3].

Theorem 12.5.4. (a) Let n > 3. Let P C Z!} be a discrete polymatroid of
rank d and suppose that the canonical basis vectors €1, ...,€, of R™ belong
to P. Let p:2l"l — R, denote the ground set rank function of the integral
polymatroid Conv(P) C R} If P is generic and if the base ring K[B] of P
is Gorenstein, then there is a vector a = (aq,...,0p_1) € Zﬁ_l with each
a; > 1 and with d > |a| + 1 such that

_ fa(4)+1, if 0#£AcC[n-1],
p(A)_{da([n]\A)Jrl,if neA+n

(b) Conversely, given o = (a1,...,Qn_1) € Ziﬁl, where n > 3, with each
a; > 1 and d € Z with d > |a| + 1, define the function p:2I" — R, by (a)
together with p(0) = 0 and p([n]) = d. Then

(i) p is strictly increasing and submodular;
(ii) the discrete polymatroid P = {u € Z7:u(A) < p(A),0 # A C [n]} C Z7
arising from p is gemeric;
(iil) the base ring K[B] of P is Gorenstein.

Proof. (a) Suppose that a discrete polymatroid P C Z7 of rank d is generic
and that the base ring K[B] of P is Gorenstein. Let F = Conv(B). Since
K|[B] is Gorenstein, there is an integer 6 > 1 such that
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5(p(A) = (d = p([n] \ A))) =
for all @ # A C [n — 1]. Hence either 6 =1 or § = 2.
If § = 2, then (2p({1}) — 1,...,2p({n —1}) — 1) € Z""~! must be a unique
integer vector belonging to the interior of 2¢(F). Since K[B] is Gorenstein it
follows that

> @o({i}) 1) =2p(A) =1, D#AC[n—1].
i€EA
Thus )
A)= Y o) - 141-1), 0#ACh-1)
ieA
Since n > 3, it follows that p({1,2}) € Z, a contradiction.
Now let § =1 and set

a;=p({i}) —1=d—p(n]\{i})+1>1, 1<i<n-—1.

Then a = (a1,...,Qn-1) € Zﬁ_l is a unique integer vector belonging to the
interior of ¢(F) C R™! and ¢(F) — « consists of those u = (uy,...,u,—1) €
R”~! such that

d— p([n] \ A) — a(4) < 3 u; < p(A) —a(4), D£ACn—1]
i€A

Since P is generic, the desired equality on p follows immediately. Moreover,
since p([n —1]) = |a] + 1 < p([n]) = d, one has d > |a| + 1, as required.
(b) Since each «; > 1 and since d > || + 1, it follows that 0 < p(4) <
]) = dfor all ) # A C [n] with A # [n]. Moreover, p({i}) > 2 for all
i<n. If) #ACBC[n] withn ¢ A and n € B, then p(B) — p(A) =
(a([n] \ B) + a(A)) > d — |a| > 1. Hence p is strictly increasing.

To see why p is submodular, we distinguish three cases as follows. First, if
A, B C [n—1] with A% 0 and B # 0, then

p(A) + p(B) = a(A) + a(B) + 2
=a(AUB)+a(ANB)+2
=p(AUB)+p(ANB)

p([n
1<
d—

unless AN B # (). Second, if A, B C [n] with n € A # [n] and n € B # [n],
then

p(A) + p(B) = 2d = (a([n] \ A) + a([n] \ B)) +2
=2d — (a([n] \ (AN B)) + a([n] \ (AU B))) + 2
=p(AUB)+p(ANB)

unless AU B # [n]. Third, if n € A and B C [n— 1], then assuming ANB # ()
and A U B # [n] one has
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p(A) +p(B) =d—a(n]\A)+1+a(B)+1
=d—a(([n]\ A\ B)+1+a(B\([n]\4)) +1
=d—o(n]\(AUB))+1+a(ANB)+1
— (AUB) + p(AN B),

as desired.
Let F = Conv(B). Since

p(F)={ueR a(d)—1<u(d) <a(d)+1,0£AC [n-1]},

it follows that ¢(F) —a C R"™! consists of those u = (ug,...,u,_1) € R*7!
such that

—1§ui1+~~+uik§1, 1<y <<y <n-—1.

Hence (p(F)—a)NZ"~! consists of those v = (vq,...,v,_1) € Z"~! such that
—1<y;<lforalll1 <i<n-—1, [{i;v;=1} <1,and [{i:v; =—-1}| < 1. In
particular, the canonical basis vectors €1, . . ., €,_1 of R"~! belong to ¢(F)—a.
Thus F is a facet of P = Conv(P). For 1 < i3 < -+ < i, < n — 1 write
Hiyooip, € R*™L (resp. Hi i, C R”~1) for the supporting hyperplane of F
determined by the linear equation z;, +- - -+x;, = 1 (resp. x;, +- - -+x;, = —1).
Then the vectors €;,, ..., €, (resp. —€;,,...,—€;, ) and €;, —¢; (resp. —€;, +¢€;),
Jj € n—1)\{i1,...,ir}, belong to the face (p(F)—a)NH;,...;, (resp. (o(F)—
a)VH;, ;) of p(F)—a. Thus (¢(F) —a)NH;,...i,, (resp. (p(F)—a)NHi, . ;)
is a facet of ¢(F) — a. Hence P is generic. Moreover, since the Ehrhart ring
K[p(F)—a] is Gorenstein, the base ring K[B] (2 K[o(F)—«]) is Gorenstein,
as desired. O

12.6 Polymatroidal ideals

We now turn to the study of monomial ideals arising from discrete polyma-
troids.

Definition 12.6.1. A monomial ideal I of S with G(I) = {x",...,x"} is
called polymatroidal if {uy,...,us} is the set of bases of a discrete polyma-
troid on [n]. In other words, all elements in G(I) have the same degree, and
if x4 = g% ... g% and x% = x% ... 2% belong to G(I) with a; > b;, then
there exists j with a; < b; such that x;(x" /z;) € G(I).

A fundamental fact on polymatroidal ideals is
Theorem 12.6.2. A polymatroidal ideal has linear quotients.

Proof. Let I be a polymatroidal ideal with G(I) = {x",...,x"=}, where
x" > ... > x" with respect to the reverse lexicographic order. Let J =
(x"1,...,x"-1) with ¢ < s. Then
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Jooxteo= (xM/[xM, xMe], L x et [[x et x M),

Thus in order to show that J : x"¢ is generated by variables, what we must
prove is that, for each 1 < k < ¢, there is ; € J : x"¢ such that x; divides
x"k /[x", x%]. Let uy = (a1,...,a,) and uy = (by,...,by,). Since x"* > x4,
there is an integer 1 < ¢ < n with a; < b; and with a;41 = biq1,...,an, = by
Hence by the exchange property 12.2.4 (c¢) (ii) there is an integer 1 < j <
i with b; < a; such that z;(x"¢/z;) € G(I). Since j < 4 it follows that
xj(x"/x;) € J. Thus x; € J : x". Finally, since b; < a;, it follows that x;
divides x" /[x"k, x1a]. O

Theorem 12.6.3. Let I and J be polymatroidal ideals. Then 1J is again poly-
matroidal.

Proof. Let P and @Q be discrete polymatroids, and let B(P) and B(Q) be their
bases. Theorem 12.3.4 together with Theorem 12.1.5 says that {u+v : u €
B(P),v € B(Q)} is the set of a discrete polymatroid {u+v : ue P,v e Q}
on [n]. Hence if I and J are polymatroidal ideals, then IJ is a polymatroidal
ideal, as desired. a

Corollary 12.6.4. All powers of a polymatroidal ideal have linear quotients.

We now classify all Cohen-Macaulay polymatroidal ideals. Recall that a
monomial ideal I C S is Cohen—Macaulay if the quotient ring S/I is Cohen—
Macaulay. Typical examples of Cohen—Macaulay polymatroidal ideals are:

Ezample 12.6.5. (a) The Veronese ideal of S of degree d is the ideal of S
which is generated by all monomials of S of degree d. The Veronese ideal is
polymatroidal and is Cohen—Macaulay.

(b) The squarefree Veronese ideal of S of degree d is the ideal of S which
is generated by all squarefree monomials of S of degree d. The squarefree
Veronese ideal is matroidal (i.e. polymatroidal and squarefree). Moreover, by
using the fact that each skeleton of a Cohen—Macaulay complex is Cohen—
Macauly, the squarefree Veronese ideal is Cohen—Macaulay.

It turns out that Cohen—Macaulay polymatroidal ideals are essentially
either Veronese ideals or squarefree Veronese ideals.

In order to prove Theorem 12.6.7 stated below, a formula to compute the
dimension and depth of a monomial ideal with linear quotient will be required.

Let I be a monomial ideal of S = Klx1,...,z,] with G(I) its unique
minimal set of monomial generators. According to Corollary 1.3.9 the minimal
prime ideals of I are generated by subsets of the variables. Hence I is unmixed
if all minimal prime ideals of I are generated by the same number of variables.
For a monomial prime ideal P, let ;1(P) denote the number of variables which
generates P, and set ¢(I) = min{u(P): P € Min(I)}. Then

dim S/T =n — c(I).



12.6 Polymatroidal ideals 257

Now assume in addition that I C S is generated in one degree and suppose
that I has linear quotients with respect to the ordering ui,us,...,us of the
monomials belonging to G(I). Thus the colon ideal (ui,ug,...,uj-1) : u; is
generated by a subset of {z1,...,2,} for each 2 < j < s. Let r; denote the
number of variables which is required to generate (u1,us,...,u;—1) : uj. Let
r(I) = maxo<j<s7;. It follows from Corollary 8.2.2 that

depth S/I =n —r(I) — 1.

Hence a monomial ideal I which is generated in one degree with linear
quotients is Cohen-Macaulay if and only if ¢(I) = r(I) + 1.

Lemma 12.6.6. If I C S is a Cohen—Macaulay polymatroidal ideal, then its
radical /T is squarefree Veronese.

Proof. Let I C S be a Cohen—Macaulay polymatroidal ideal. We may assume
that U,cq(r supp(u) = {z1,...,zn}. Let u € G(I) be a monomial for which
| supp(u)| is minimal. Let, say, supp(u) = {Zn—dt1, Tn-dt2y---sTnt Let J
denote the monomial ideal generated by those monomials w € G(I) such that
w is bigger than u with respect to the reverse lexicographic order. We know
that the colon ideal J : w is generated by a subset M of {x1,...,2,}. We
claim that {z1,...,2,—q} C M. For each 1 <1i < n — d, there is a monomial
belonging to G(I) which is divided by z;. It follows from Proposition 12.2.6
that there is a variable x; with n —d +1 < 7 < n such that v = xiu/xj IS
G(I). One has v € J. Since z;u = z;v € J, it follows that z; € J : u, as
required. Consequently, r(I) > n — d. Since I is Cohen—Macaulay, it follows
that ¢(I) > n —d + 1. It then turns out that I is not contained in the ideal
({z1,..., 2} \ W) for each subset W C {z1,...,2,} with |W| = d. Hence
for each W C {z1,...,z,} with [W| = d there is a monomial w € G(I) with
supp(w) C W. Since |supp(w)| > |supp(u)| = d, one has supp(w) = W.
Hence v/T is generated by all squarefree monomials of degree d in 1, ..., x,,
as desired. O

Theorem 12.6.7. A polymatroidal ideal I is Cohen—Macaulay if and only if
I s
(i) a principal ideal, or
(ii) a Veronese ideal, or
(iil) @ squarefree Veronese ideal.

Proof. By using Lemma 12.6.6 we assume that /T is generated by all square-
free monomials of degree d in z1,...,z,, where 2 < d < n. One has ¢(I) =
¢(vVI) = n —d+ 1. Suppose that I is not squarefree (or, equivalently, each
monomial belonging to G(I) is of degree > d). Let u = [];_,, 4., zi" € G(I)
be a monomial with supp(u) = {Zn—d+1, Tn—d+2,-..,2Tn}. For a while, we
assume that (%) there is a monomial v = [[I_, ¥ € G(I) with b, 411 >
Gpn—d+1- Let J denote the monomial ideal generated by those monomials
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w € G(I) such that w is bigger than u with respect to the reverse lexico-
graphic order. As was shown in the proof of Lemma 12.6.6, the colon ideal
J 1 u is generated by a subset M of {z1,...,z,} with {z1,...,2,—q} C M.
We claim that x,_4+1 € J : u. By using Proposition 12.2.6 our assump-
tion (x) guarantees that there is a variable z; with n —d 4+ 1 < j < n such
that uwp = zp_gq+1u/x; € G(I). Since ug € J, one has x,_q41 € M. Hence
r(I) >n—d+ 1. Thus ¢(I) < r(I) 4+ 1 and I cannot be Cohen—Macaulay.
To complete our proof, we must examine our assumption (x). For each
d-element subset o = {zi,, %4y, ..., 2, } of {z1,...,2,}, there is a monomial
Uy € G(I) with supp(u,) = o. If there are d-element subsets o and 7 of
{z1,...,2,} and a variable x;, € o N7 with a;, < b;,, where a;, (resp.
bi,) is the power of x;, in u, (resp. u.), then after relabelling the variables
if necessarily we may assume that o = {z,—_g4+1, Tn—d+2,- .., Tn} With ig =
n —d + 1. In other words, the condition (x) is satisfied. Thus in the case
that the condition (x) fails to be satisfied, there is a positive integer e > 2
such that, for each d-element subset {x;,,;,,...,z;,} of {z1,...,z,} one has
w= (T, @iy w5,)° € G(I). Let w = @zl ([Tim, gy 5) € G(I). Let
J denote the monomial ideal generated by those monomials v € G(I) such
that v is bigger than w with respect to the reverse lexicographic order. Since
H?;nl_d x¢ € G(I), by using Proposition 12.2.6 one has wg = zp_qw/z, € J
and wy = Zy_gr1w/x, € J. Thus the colon ideal J : w is generated by a subset
M of {z1,...,2,} with {z1,...,Zn—q, Tn—g+1} C M. Hence r(I) > n—d+1,
and thus one has ¢(I) < r(I) + 1, a contradiction. O

A Cohen—Macaulay ideal is always unmixed. The converse is in general
false, even for matroid ideals. For example, let I C K|z, ..., zs] be the mono-
mial ideal generated by

L1T3, L1L4, L1L5, L1L6, L2L3, L2L4, L2L5, L2XL6, L3L5; L3L6, L4Ls; LaLe-

Then I is matroidal and unmixed. However, I is not Cohen—Macaulay.

12.7 Weakly polymatroidal ideals

The purpose of this section is to extend the notion of polymatroidal ideals
introduced in the previous section and to show that this class of ideals has
again linear quotients.

Let S = K|zy,...,2,] be the polynomial ring over the field K. For any
monomial u, m(u) denotes the greatest integer ¢ for which z; divides u. For

u=xy" - xom we set deg, u = a;, and call it the x;-degree of u.

Definition 12.7.1. A monomial ideal I is called weakly polymatroidal if
for every two monomials v = z{* -+ - 2% and v = x?l -2 in G(I) such that
a1 = by, -+,a;,_1 = by_1 and a; > b; for some ¢, there exists j > ¢ such that
zi(v/z;) € 1.
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It is clear from the definition that a polymatroidal ideal is weakly polyma-
troidal. The converse is not true in general, as the following example shows:

Let I be the polymatroidal ideal of KJz1,..., 2] which is generated by
all squarefree monomials of degree 3. Let J denote the monomial ideal of
Klxy,...,x6] generated by those monomials u € G(I) with xoz4ws <jex u.
Then the monomial ideal J is weakly polymatroidal, but not polymatroidal.

Theorem 12.7.2. A weakly polymatroidal ideal I has linear quotients.

Proof. Let G(I) = uq,...,Up, where u; > ug > -+ > u,, in the pure lexico-
graphical order with induced by 1 > x5 > --- > x,, . We show that I has
linear quotients with respect to uq, ..., Upn.

Fix a number j and let v be a monomial with v € (u1,...,u;_1) : u;. Then
vu; € (u;) for some i < j. Let u; = 25" -~ 2% and uj = 25" - - - 2». Then there
exists an integer ¢t < n with a; = by,...,a;—1 = by—1 and a; > b;. Therefore
z¢|v, and in addition there exists ¢ > ¢ such that xz;(u;/x¢) € I. Thus the
set A = {up: x¢(u;/x¢) € (ux)} is nonempty. Let us € A be the unique
element such that for any u, € A (k # s), we have either deguy > degus or
deguy = degus and uy <jex us. One has z,(u;/x¢) = ush for some h € S. If
x¢|h, then u; = ush' for some h' € S, which is a contradiction since u; € G(I).
So we have z2* " divides .

We claim that us, > u; in the pure lexicographical order. On the con-

trary assume that assume that u, < u;. Let uy = ' ---2fr with ¢; =
bi,...,¢r_1 = by_1 and ¢, < b, for some 1 < r < n. Since zi’”‘l\us,

one has r < t. Then from the definition of weakly polymatroidal, one has
w = usx,/x), € I for some k > r. Since r < ¢, x,.|h and so zih/z, € S. From
w(zrh/x,) = x¢(uj/xe), us <iex w and degw = degu,, we have ¢ G(I). Let
w = ug h' for some s’ and ' € S, h’ # 1. Then deg uy < degw = degus. This
is a contradiction, since uy € A. Therefore one has ush € (u1,...,u;_1), and
hence zyu; € (u1,...,uj—1). Since x; divides v, the proof is complete. a

Combining Theorem 12.7.2 with Theorem 8.2.15 we obtain

Corollary 12.7.3. A weakly polymatroidal ideal is componentwise linear.

Problems

12.1. Let P C R? denote the compact set consisting of those (z,y) € R% with
0<zx<2,0<y<2andz+y<3.

(a) Show that P is a polymatroid and find its ground set rank function.

(b) What is rank(P)?

(c¢) By using Theorem 12.1.4 find the vertices of PV PV P.

12.2. Let A = (A1, ..., Ay) be a family of nonempty subsets of [n] and define
the integer valued nondecreasing function p4 : 2"} — R, by setting



260 12 Discrete Polymatroids
pa(X)=|{k: AxnX#0}, X Clnl

(a) Show that p4 is submodular. The polymatroid P with p4 its ground set
rank function is called transversal polymatroid presented by A.

(b) Let P4 denote the transversal discrete polymatroid presented by A =
(A1,...,Aq). In other words, P4 is the set of all integer points belonging to
the transversal polymatroid presented by A = (Ajy,...,Ay). Show that the
set of bases of Py is

BA:{€i1+"'+€id ZikEAk,lgk‘Sd}CZi.

(c) Let P C Z% denote the discrete polymatroid of rank 3 consisting of those
u = (up,us, us, uy) € Z‘j_ with each u; < 2 and with |u| < 3. Show that P
cannot be transversal.

12.3. (a) Let vy, ..., v, be vectors of a vector space. Let M denote the subset
of 2["! consisting of those F' C [n] such that the vectors v; with k € F are
linearly independent. Show that M is a matroid.

(b) Let G be a finite graph with the edges eq, ..., e,. Let M denote the subset
of 2I" consisting of those F' C [n] such that the subgraph of G’ whose edges
are e, with k € F is forest. Show that M is a matroid.

12.4. Let B the set of bases of a discrete polymatroid. We say that B satisfies
the strong exchange property if, for all u,v € B with u # v and for all
i,j with u(é) > v(7) and u(y) < v(j), one has u —¢; +¢; € B.

(a) Show that the set of bases of a discrete polymatroid of Veronese type of
Example 12.2.8 satisfies the strong exchange property.

(b) Find a discrete polymatroid whose set of bases does not satisfy the strong
exchange property.

12.5. (a) Let P C R3 denote the integral convex polytope which is the convex
hull of (0,0,0),(1,1,0),(1,0,1),(0,1,1). Does P possess the integer decompo-
sition property?

(b) Let P C R? denote the integral convex polytope which is the convex hull
of (0,0,0),(1,1,0),(1,0,1),(0,1,1),(—1,—1,—1). Show that P possesses the
integer decomposition property. Is the toric ring K[P] Gorenstein?

12.6. (a) The discrete polymatroid of Veronese type of Example 12.2.8 is
called squarefree if each d; = 1. Let B be the set of bases of a discrete poly-
matroid of squarefree Veronese type with n = 2d. Show that the base ring
K|[B] is Gorenstein.

(b) Let B be the set of bases of a discrete polymatroid of Veronese type with
each d; = d. Show that the base ring K[B] is Gorenstein if and only if n is
divided by d.

12.7. Let n = 3 and let a1,a92,a3 > 0 be integers. Let P C Zi denote the
discrete polymatroid of rank d consisting of those u = (u1, uz,u3) € Zi such
that u; < aq, us < as, uz < az and uqy + us + uz < d.
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(a) When is P generic?
(b) When is the base ring K[B] of P Gorenstein?

12.8. Let a = (a1, ...,an) € Z} with a,, > 1 and Py the integral polymatroid
on the ground set {2,3,...,n} whose ground set rank function p is given by
p(X) = 370 inx) @ for 0 # X C {2,3,...,n}. Let K[Pa] denote the toric
ring of P,.

(a) Ifa=(0,1,...,1,2) € Z7, then show that K[P,] is Gorenstein.

(b) If a=(0,1,0,2,0,3), then show that K[P,] is Gorenstein.
(¢)Ifa=(0,...,0,a,) € Z, then show that K[P,] is Gorenstein if and only
if a,, divides n.

12.9. Let I C Klz1,...,xs) be the monomial ideal generated by
L1T3, T1X4, T1X5, L1L6, L2LZ3y L2L4, L2L5, L2XL6, LIL5, LILEy L4L5, L4LE-

(a) Show that I is matroidal and unmixed.
(b) Show that I is not Cohen-Macaulay.

12.10. Let I be the polymatroidal ideal of K|[z1,...,zs] which is generated
by all squarefree monomials of degree 3. Let J denote the monomial ideal of
Kl[xy,...,x6] generated by those monomials u € G(I) with xoz47s <jex u.
Show that the monomial ideal J is weakly polymatroidal, but not polyma-
troidal.

Notes

A standard reference for the theory of matroids is the book by Welsh [Wel76].
Edmonds [Edm?70] studied the polyhedral theory of polymatroids. Discrete
polymatroids were introduced in [HH02]. One of the widely open outstand-
ing conjectures due to White [Whi80] asserts that the defining ideal of the
base ring of a matroid is quadratically generated. This conjecture can be ex-
tended to the base ring of a discrete polymatroid. Stronger conjectures even
assert that the defining ideal of the base ring of a discrete polymatroid has a
quadratic Grobner basis, or at least is Koszul.

Polymatroidal ideals are ideals with linear quotients [CHO3], and, as a
consequence of a classical result due to Edmonds [Edm70], are closed under
multiplication. In particular, all powers of a polymatroidal ideal have lin-
ear quotients. The notion of weakly polymatroidal ideals was introduced by
[KHO06], where only monomial ideals generated in one degree were studied.

Later, Fatemeh and Somayeh [FS10] generalized this notion to arbitrary
monomial ideals.
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Some homological algebra

A.1 The language of categories and functors

This is not an introduction to category theory but just a summary of some of
the standard terminology used therein.

A category C is a class Obj(C) of objects together with a class Mor(C)
of morphisms. Each morphism f has a unique source object A € Obj(C)
and a unique target object B € Obj(C). If A is the source and B the target
of f one writes f: A — B and says that f is a morphism from A to B. The
class of morphisms from A to B is denoted by Hom(A, B).

For every three objects A, B and C' a map

Hom(A, B) x Hom(B,C) — Hom(4,C), (f.g) —go /.

called composition of morphisms is given such that the following axioms
hold:

(A) (Associativity) If f:A — B, g: B — C and h:C — D then

ho(gof)=(hog)of.

(B) (Identity) For every object X, there exists a morphism idx: X — X called
the identity morphism for X, such that for every morphism f: A — B,
we have idgof = f = foida.

Examples of categories appear in all branches of mathematics. The sim-
plest example of a category is the category of sets S whose objects are the
sets and whose morphisms are the maps between sets. Other examples are
for instance: the category 7 of topological spaces, whose morphisms are the
continuous maps, or for a given ring R, the category M of R-modules, whose
morphisms are the R-module homomorphisms. If R is graded we can also con-
sider the category Gr of graded R-modules. The morphisms in this case are
the homogeneous R-module homomorphisms of degree 0. As a special case of

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 263
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the last type of category we considered in Section 5.1 the category G of graded
modules over the exterior algebra.

Let A and B be categories. A covariant functor F: A — B from A to B
is a mapping that assigns to each object A € A and object F(A) € B and to
each morphism f: A — B in A a morphism F(f): F(A) — F(B) such that
the following axioms hold:

(C) For all morphisms f: B — C and g: A — B in A one has

F(fog)=F(f)oF(g).
(D)  F(idx) = idp(x) for all objects X in A.

A contravariant functor F: A — B is defined similarly. The only
difference is that it reverses the arrows of the maps. In other words to
each morphism f: A — B in A the contravariant functor F' assigns a mor-
phism F(f):F(B) — F(A), and for compositions of morphisms one has
F(fog)=F(g)o F(f).

A typical example of this concept is the functor from the category of
topological spaces to the category of abelian groups which assigns to each
topological space X its ith singular homology group H;(X;Z). Indeed, a con-
tinuous map f: X — Y induces a group homomorphism H;(f;Z): H;(X;Z) —
H;(Y;Z) satisfying the axioms (C) and (D).

Other important examples are the functors Tor and Ext: let R be a ring,
Mp the category of R-modules and N € Obj(Mp). Then for each integer
i > 0, the assignments Tor®(N,—): Mr — Mg, M +— Tor®(N, M), and
Ext% (N, —): Mpr — Mg, M + Ext'(N, M), are covariant functors, while
Ext%(—, N): Mg — Mg, M + Exth (M, N), is a contravariant functor.

Special cases of these examples are the covariant functors — ® g N and
Homp (N, —) and the contravariant functor Hompg(—, N). The first of these
functors is right exact, while the other two functors are left exact. Quite gen-
erally, if we have categories A and B where we can talk about exact sequences,
for example in the categories Mg, Gr or G mentioned above, we say that a
functor F: A — B is left exact if for any exact sequence

0—-—A—-B—-C—0

in A, the sequence 0 — F(A) — F(B) — F(C) is exact for covariant F' and
0 — F(C) — F(B) — F(A) is exact for contravariant F. Similarly one defines
right exactness. Finally F' is called exact if F' is left and right exact.

Let A be any one of the module categories Mg, Gg or G, and let M €
Obj(A). Then M is called injective if the functor Hom(—, M) is exact, it is
called projective if Hom (M, —) is exact and it is called flat if —® M is exact.
In Section 5.1 we have seen that the exterior algebra viewed as an object in
G is injective.

Given two covariant functors F,G: A — B. A family of morphisms
na: F(A) — G(A) in B with A € A is called a natural transformation
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from F to G, written n: F' — G, if for all A, B € Obj(.A) and all morphisms
f: A — B the following diagram

is commutative.

A natural transformation 1: F' — G is called a functorial isomorphism
if there exists a natural transformation 7: G — F' such that 74 ona = idp(a)
and o074 = idg(a) for all A € Obj(A). It is customary to call an isomorphism
a: F(A) — G(A) functorial if there exists a functorial isomorphism n: F' — G
such that a = 4. An example of a functorial isomorphism is the isomorphism
MY — M* given in Theorem 5.1.3.

A.2 Graded free resolutions

For this and the following sections of Appendix A we fix the following as-
sumptions and notation. We let K be a field, (R, m) a Noetherian local ring
with residue field K or a standard graded K-algebra with graded maximal
ideal m. As usual we write S for the polynomial ring K{z1,...,x,]. We let M
be a finitely generated R-module, and will assume that M is graded if R is
graded.

We let M(S) be the category of finitely generated graded S-modules, the
morphisms being the homogeneous homomorphisms M — N of degree 0,
simply called homogeneous homomorphisms. A homogeneous homomor-
phism ¢: M — N of graded S-modules of degree d is an S-module homomor-
phism such that p(M;) C N, 4 for all i. For example, if f € S is homogeneous
of degree d, then the multiplication map S(—d) — S with g — fg is a ho-
mogeneous homomorphism. Here, for a graded S-module W and an integer
a, one denotes by W (a) the graded S-module whose graded components are
given by W(a); = W,;. One says that W(a) arises from W by applying the
shift a.

Now let M be a finitely generated graded S-module with homogeneous

generators my,...,m, and deg(m;) = a; for ¢ = 1,...,r. Then there exists
a surjective S-module homomorphism Fy = @;:1 Se; — M with e; — m;.
Assigning to e; the degree a; for ¢ = 1,...,r, the map Fy — M becomes

a morphism in M(S) and Fy becomes isomorphic to @)_, S(—a;). Thus we
obtain the exact sequence

OHUH@S(ﬁj)ﬁOJ — M — 0,
J

where So; = [{i: a; = j}|, and where U = Ker (€ S(—j)Poi — M).
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The module U is a graded submodule of Fy = €p, S(—j)Pi. By Hilbert’s
basis theorem for modules we know that U is finitely generated, and hence we
find again an epimorphism @j S(—j)% — U. Composing this epimorphism
with the inclusion map U — @, S(— §)P% we obtain the exact sequence

B s — PSP — M —o.

of graded S-modules. Proceeding in this way we obtain a long exact sequence
Foooo — F—F — Fp— M-—0

of graded S-modules with F; = S(—3)%4. Such an exact sequence is called
a graded free S-resolution of M.

It is clear from our construction that the resolution obtained is by no
means unique. On the other hand, if we choose in each step of the resolution
a minimal presentation, the resolution will be unique up to an isomorphism,
as we shall see now.

A set of homogeneous generators myq, ..., m, of M is called minimal if
no proper subset of it generates M.

Lemma A.2.1. Let mq,...,m, be a homogeneous set of generators of the
graded S-module M. Let Fy = EB;:I Se; and let e: Fy — M be the epimor-
phism with e; — m; fori=1,...,r. Then the following conditions are equiv-
alent:

(a) my,...,m, is a minimal system of generators of M ;
(b) Ker(e) C mEy, where m = (z1,%2,...,Tn)-

Proof. (a) = (b): Suppose Ker(e) ¢ mF. Then there exists a homogeneous
element f = "', f;e; such that f ¢ mFy. This implies that at least one of
the coefficients f; is of degree 0, say deg fi; = 0. Therefore f; € K \ {0}, and
it follows that

mi = fi ' foma + o+ f1 frme,

a contradiction.

(b) = (a): Suppose m; can be omitted, so that ma, ..., m, is a system of
generators of M as well. Then we have my = Y__, f;m; for suitable homoge-
neous elements f; € S. This yields the element f =e; — >\, f;e; in Ker(e)
with f & mFy, a contradiction. O

Let M be a finitely generated graded S-module. A graded free S-resolution
F of M is called minimal if for all ¢, the image of F;;1 — F; is contained
in mF;. Lemma A.2.1 implies at once that each finitely generated graded S-
module admits a minimal free resolution.

The next result shows that the numerical data given by a graded minimal
free S-resolution of M depend only on M and not on the particular chosen
resolution.
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Proposition A.2.2. Let M be a finitely generated graded S-module and
F:...—F—F —F—M-—70

a minimal graded free S-resolution of M with F; = € S(—4)P4 for all i.
Then
Bij = dimg Tor; (K, M); for all i and j.

Proof. As a graded K-vector space Tor;(K, M) is isomorphic to H;(F/mF).
However, since the resolution F is minimal all maps in the complex F/m[F are
zero. Therefore H;(F/mF) = F/mF = P, K(—j)P. O

The numbers §;; = dim Tor; (K, M); are called the graded Betti num-
bers of M, and 3; = }_; B;;(= rank F}) is called the ith Betti number of
M.

We conclude this section by showing that not only are the graded Betti
numbers determined by a minimal graded free resolution but that in fact a
minimal graded free resolution of M is unique up to isomorphisms.

Proposition A.2.3. Let M be a finitely generated graded S-module and let F
and G be two minimal graded free S-resolutions of M. Then the complezes F
and G are isomorphic, that is, there exist isomorphisms of graded S-modules
a;: F; — G; such that the diagram

F; F Fy M 0
Oéll Ofll aol idl
G; G Gy M 0

is commutative.

Proof. The existence of the isomorphism «; will follow by induction on i
once we have shown the following: let ¢: U — V be an isomorphism of finitely
generated graded S-modules, and let : ' — U and n: G — V be homogeneous
surjective homomorphisms with Ker(e) C mF and Ker(n) C mG. Then there
exists a homogeneous isomorphism «: F' — G such that

F —~-U
L
G "1V
is commutative. Indeed, let f1,..., f, be a homogeneous basis of F'. Then

@(E(fl)% e 'a‘p(g(fr))

is a homogeneous system of generators of V. Since 7 is a homogeneous sur-
jective homomorphism, there exist homogeneous elements g1, ..., g, € G with
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n(g;) = @(e(f;)) fori =1,...,r. Thus if we set a(f;) = g; fori =1,...,r, then
a: F' — G is a homogeneous homomorphism which makes the above diagram
commutative. Modulo m we obtain the commutative diagram

F/mF —=— U/mU

L
G/mG —1— V/mV.

Since Ker(e) € mF, it follows that & F/mF — U/mU is an isomorphism.
Similarly, 7 and ¢ are isomorphisms. Thus & = 7! o g 0 £ is an isomorphism.
Now by a homogeneous version of the Nakayama lemma it follows that « itself
is an isomorphism. m]

A.3 The Koszul complex

We recall the basic properties of Koszul homology that are used in this book.
Let R be any commutative ring (with unit) and f = f1,..., fi, a sequence
of elements of R. The Koszul complex K (f; R) attached to the sequence
f is defined as follows: let F' be a free R-module with basis eq,...,e,,. We
let K;(f;R) be the jth exterior power of F, that is, K;(f;R) = N F. A
basis of the free R-module K,;(f; R) is given by the wedge products ep =
ei, Neiy, N+ Nei;, where F' = {iy < iy < --- <i;}. In particular, it follows
that rank K;(f; R) = (";)
We define the differential 0 : K;(f; R) — K;_1(f; R) by the formula

J
(e, Negy N+ Nej,) Z DEFLf e Ney N Nes, A€y Noo- Neg.
k=1

One readily verifies that 9 o @ = 0, so that K.(f; R) is indeed a complex.
Now let M be an R-module. We define the complexes

K. (f;M) =K. (f;R)®@r M and K'(f;M)=Homp(K,(f;R), M).

H;(f; M) = H;(K(f; M)) is the ith Koszul homology module of f with
respect to M, and H'(f; M) = H'(Hompg(K,(f; R), M)) is the ith Koszul
cohomology module of f with respect to M.

Let I C R be the ideal generated by fi,..., f;. Then

Ho(f; M) = M/IM and H,,(£; M) 2 0:5 1 = {x € M: Iz =0}.

The Koszul complex K, (f; R) is a graded R-algebra, namely the exterior
algebra of F', with multiplication the wedge product. We have the following
rules whose verification we leave to the reader.
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(i) a Ab=(—1)degadesby A g for homogeneous elements a,b € K (f; R).
(i) 9(aAb) = d(a)Ab+(—1)482aAd(b) for a,b € K (f; R) and a homogeneous.

We denote by Z,(f; R) the cycles of the Koszul complex and by B, (f; R)
its boundaries. Rule (ii) has an interesting consequence.

Proposition A.3.1. The R-module Z, (f;R) is a graded subalgebra of
K, (f;R) and B,(f;R) C Z.(f;R) is a graded two-sided ideal in Z, (f; R).
In particular, H,(f; R) = Z,(f; R)/B.(f; R) has a natural structure as graded
Hy(f; R)-algebra. Moreover, if I is the ideal generated by the sequence £, then

H.(f;R) =

Proof. Let z; and 22 be two homogeneous cycles. Then 9(z1 A z2) = 9(21) A
29 4+ (—=1)48212) A O(22) = 0, since O(z1) = d(22) = 0. So 21 A 23 is again
a cycle, which shows that Z(f; R) is a subalgebra of K(f; R). Now let b be
a homogeneous boundary and z a cycle. There exists a € K(f; R) such that
d(a) = b. It then follows that d(a A z) = d(a) A z + (—1)%82%a A J(2) = b A 2,
which shows that bAz € B(f; R). Similarly, we have zAb € B(f; R). This shows
that B(f; R) is indeed a two-sided ideal in Z(f; R). Finally, since H(f; R) is a
Hy(f; R)-algebra, and since Hy(f; R) = R/I, it follows that IH(f; R) =0. O

Corollary A.3.2. If (f) = R, then H,(f;R) =

Given an R-module M, then as in the preceding proof one shows that
Z.(f;R)Z.(f;M) C Z.(f; M) and that B,(f;R)Z.(f; M) C B.(f; M). This
then implies that H,(f; M) is a graded H, (f; R)-module.

For computing the Koszul homology there are two fundamental long exact
sequences of importance.

Theorem A.3.3. Let f = f1,..., fm be a sequence of elements in R, and
denote by g the sequence f1,..., fm—1. Furthermore, let M be an R-module
and 0 - U — M — N — 0 a short exact sequence of R-modules. Then we
obtain the following long exact sequences:

0— Hpn(f;U) - Hp(f;M) — Hp (£;N) - Hy 1 (£;U) = Hppo1 (£ M) — -
ir1(f;N) = Hi(f;U) — Hi(f; M) — Hi(f; N) — Hi 1 (;U) — -
= Hi(f;N) — Ho(f;U) — Ho(f; )*Ho(f’N)*Q

and

0— Hy(f; M) — Hp1(g; M) — Hp1(g; M) — Hp 1 (£; M) —
v — Hip (f; M) — Hi(g; M) — Hi(g; M) — Hi(f; M) —
- — Hi(f; M) — Ho(g; M) — Ho(g; M) — Ho(f; M) — 0,

where for all i, the map H;(g; M) — H;(g; M) is multiplication by £ f,,.
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Proof. The short exact sequence 0 — U — M — N — 0 induces the short
exact sequence of complexes

0—-K.(f;U)—- K.(f;M) - K, (f;N)— 0

whose corresponding long exact sequence is the first fundamental long exact
sequence.

As for the proof of the second fundamental long exact homology sequence
we consider for each ¢ the map

a;: Ki(f;R) — K;_1(g; R)

defined as follows: let a € K;(f; R); then a can be uniquely written in the
form a = ag + a1 A e, with ag € K;(g; R) and a1 € K;_1(g; R). We then set
afa) = ay. Applying rule (ii) one immediately checks that 9 o a = a0 9, so
that

a: K, (f;R) — K.(g; R)[-1],

where [—1] denotes the shifting of the homological degree by —1.
Notice that K(g; R) is a subcomplex of K(f; R) and indeed is the kernel
of a. Hence we obtain the short exact sequence of complexes

0— K.(gM) — K.(f;M) — K.(g; M)[-1] — 0

whose corresponding long exact sequence homology sequence is the second
fundamental long exact sequence.

It remains to be shown that the map H;(g; M) — H;(g; M) is multipli-
cation by =+ f,,. In fact, the map is the connecting homomorphism. Thus for
[a] € H;(g; M), we have to choose a preimage b € K;1(f; M) under the map
a for the cycle a € K;(f; M). Then the image of [a] in H;(g; M) is the ho-
mology class d(b). In our case we may choose b = a A ep,. Then 9(b) = £f,a,
and [a] maps to *f,,[a], as desired. O

The sequence f = f1,..., f,, is called regular on M, or an M-sequence,
if the following two conditions hold: (i) the multiplication map

M/(fi,.o fio)M —Ls MJ(fr, . fio)M

is injective for all 4, and (ii) M/(f)M # 0.
Regular sequences can be characterized by the Koszul complex.

Theorem A.3.4. Let f = f1,..., f, be a sequence of elements of R and M
an R-module.

(a) If £ is an M -sequence, then H;(f; M) =0 fori > 0.

(b) Suppose in addition that M is a finitely generated R-module and that R
is either (1) a Noetherian local ring with mazimal ideal m, or (ii) a graded
K -algebra with graded maximal ideal m, and that (f) C m. In case (ii) we
also assume that £ is a sequence of homogeneous elements. Then we have:
if Hi(f; M) = 0, then the sequence £ is an M -sequence,



A.3 The Koszul complex 271

Proof. (a) We proceed by induction on m. Let m = 1. We have H;(f1; M) =0
for ¢ > 1, and the exact sequence

0 — Hi(fi; M) MM (A1)
Since f1 is regular on M, the kernel of the multiplication map f1: M — M is
zero. Hence Hq(f1; M) =0, as well.
Now let m > 1, and set g = f1, ..., fmn—1. By induction hypothesis we have
H;(g; M) = 0 for ¢ > 0. Thus the second fundamental long exact sequence
yields the exact sequence

0 — Hy(f; M) — Ho(g; M) — Ho(g; M),
and for each i > 1 the exact sequence
0= Hi(g; M) — Hi(f; M) — H;_1(g; M) = 0.

It follows that H;(f; M) = 0 for ¢ > 1. Since Ho(g; M) = M/(g) M, we see that
Hy(f; M) is the kernel of the multiplication map f,,: M/(g)M — M/(g)M.
Thus Hy(f; M) = 0 as well, since f,, is regular on M/(g)M.

(b) Again we proceed by induction on m. For m = 1 the assertion fol-
lows from the exact sequence (A.1). Now let m > 1. Since H;(f; M) = 0
by assumption, and since Ho(g; M) = M/(g)M, we deduce from the exact
sequence

Hy(g; M) — Hy(g; M) — Hy(f; M) — Ho(g; M) — Ho(g; M)

that f, is regular on M/(g)M and that Hy(g; M)/(fm)H1(g; M) = 0. Since
fm € m, Nakayama’s lemma implies that H;(g; M) = 0. By our induction
hypothesis we then know that g is an M-sequence, and since f,, is regular on
M/(g)M, we conclude that f is an M-sequence. O

Theorem A.3.4 has the following important consequence

Corollary A.3.5. Let K be a field, S = Klx1,...,x,] the polynomial ring
in n variables and M be a finitely generated graded S-module. Moreover, let
f=fi,..., fx be a homogeneous S-sequence. Then for each i there exists an
isomorphism of graded S/(f)-modules

Tor (S/(f), M) = H,(f; M).
In particular, for x = x1,...,2, we have B;;(M) = dimg H;(x; M); and
hence projdim M < n.

Proof. We compute Tor®(S/(f), M) by means of a free S-resolution of S/(f).
Since f is an S-sequence, Theorem A.3.4 implies that the Koszul complex
K. (f; S) provides a minimal graded free S-resolution of S/(f), so that

Tor? (S/(£), M) = Hy(K.(f;S) @ M) = H;(f; M).

Since this isomorphism respects the grading, the desired conclusion follows.
O



272 A Some homological algebra

A.4 Depth

The depth of M, denoted depth M, is the common length of a maximal M-
sequence contained in m (consisting of homogeneous elements if M is graded).
In homological terms the depth of M is given by

depth M = min{i : Extz(R/m, M) # 0} = min{i : H: (M) # 0}.
Here H: (M) is the ith local cohomology module of M; see A.7.

Proposition A.4.1.f = fi,..., f, be an M-sequence contained in m (con-
sisting of homogeneous elements if M is graded). Then depth M/(f)M =
depth M — m.

Proof. We may assume m = 1. The general case follows by an easy induction
argument. Thus let f by a regular element on M. The short exact sequence

0 ML M M/fM —— 0

gives rise to the long exact sequence

- SExt Y (R/m, M) —— Ext'™'(R/m, M)— Ext"""(R/m, M/fM)
—  EBExt/(R/m,M) — .-

Since f is in the annihilator of each Ext’(R/m, M), this long exact sequence
splits into the short exact sequences

0 — BExt' " '(R/m, M) — Ext"""(R/m, M/fM) — Ext‘(R/m, M) — 0.

Let t = depth M. Then Ext’'(R/m,M) = 0 for i < ¢, and the short exact
sequences imply that Ext'(R/m,M/fM) = 0 for i < t — 1, while for i = ¢
they yield the isomorphism

Ext' " (R/m, M/fM) = Ext*(R/m, M). (A.2)
This shows that depth M/fM =t — 1, as desired. O
The depth of a module can also be characterized by Koszul homology.

Proposition A.4.2. Let x = z1,...,x, be a minimal system of generators
of m. Then
depth M = n — max{i: H;(x; M) # 0}.

Proof. We proceed by induction on the depth of M. If depth M = 0, then
Homp(R/m, M) # 0. Hence there exists « € M such that maz = 0, and
consequently H, (x; M) # 0.

Now let depth M =t > 0, and let f € m be a regular element on M. Since
fH;(x; M) =0 for all 4, the long exact sequence of Koszul homology attached
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with the short exact sequence 0 — M — M — M/fM — 0 splits into the
short exact sequences

0 — Hi(x; M) — Hij(x; M/fM) — H;_1(x; M) — 0.

Since by Proposition A.4.1 we have depth M/fM = ¢ — 1, our induction
hypothesis implies that H;(x;M/fM) = 0 for i > n —t + 1 and that
H;(x;M/fM) # 0 for i = n —t + 1. Thus the short exact sequences of
Koszul homology imply first that H;(x; M) = 0 for ¢ > n — ¢, and then by
choosing i =n —t + 1 that H,_+(x; M) = Hy,_1y1(x; M/ fM) # 0. O

Combining Proposition A.4.2 with Corollary A.3.5 we obtain

Corollary A.4.3 (Auslander—Buchsbaum). Let M be a finitely generated
graded S = K[x1,...,x,]-module. Then

projdim M + depth M = n.

This is a special version of the Auslander-Buchsbaum theorem which is
used several times in this book. More generally the Auslander—Buchsbaum
theorem says that projdim M + depth M = depth R, if projdim M < oc.

A.5 Cohen—Macaulay modules

Let M be an R-module. Since every M-sequence which is contained in m is
part of a system of parameters of M, it follows that depth M < dim M. The
module M is said to be Cohen—Macaulay if depth M = dim M. The ring R
is called a Cohen—Macaulay ring if R is a Cohen—Macaulay module viewed
as a module over itself.

One important property of Cohen—Macaulay rings is that they are un-
mixed. In other words, dim R = dim R/P for all P € Ass(R). More generally,

we have
dimM =dimR/P forall P € Ass(M), (A.3)

if M is Cohen—Macaulay. This follows from the fact that depth M < dim R/P
for all P € Ass(M). In particular, we see that a Cohen—-Macaulay module has
no embedded prime ideals, that is, all associated prime ideals of the module
are minimal in its support.
An unmixed ring, however, need not be Cohen—Macaulay. For example,
the ring
R= K[l‘l, To, T3, 1‘4]/(171, 132) n (I37 I4)

is unmixed but not Cohen—Macaulay, since depth R = 1, while dim R = 2.
The Cohen—Macaulay property is preserved under two important module
operations.
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Proposition A.5.1. Let M be a Cohen—Macaulay module, £ an M -sequence
with (f) C m, and P a prime ideal in the support of M. Then M/(f)M and
Mp are again Cohen—Macaulay.

Proof. Let f = f1,..., fin. Since f is part of a system of parameters of M,
it follows that dim M/(f)M = dim M — m. Hence Proposition A.4.1 implies
that M/(f)M is Cohen—-Macaulay.

In order to prove that Mp is Cohen—Macaulay, we use induction on
depth Mp. If depth Mp = 0, then P € Ass(M), and hence, according to
(A.3), P is a minimal prime ideal of M. Thus dim Mp = 0, so Mp is Cohen—
Macaulay. If depth Mp > 0, then (A.3) implies that P is not contained in any
associated prime ideal of M. Thus there exists f € P which is regular on M,
and one may apply the induction hypothesis to (M/fM)p = Mp/fMp to see
that dim Mp — 1 = dim Mp/fMp = depth Mp/fMp = depth Mp — 1, from
which the desired conclusion follows. ad

A.6 Gorenstein rings

Let M be an R-module. The socle of M, denoted Soc(M), is the submodule
of M consisting of all elements x € M with ma = 0. Observe that Soc(M)
has a natural structure as an R/m-module, and hence is a finite-dimensional
K-vector space.

Proposition A.6.1. Let M be a Cohen—Macaulay R-module of dimension d,
and £ = f1,..., fa an M-sequence. Then

Ext}(R/m, M) = Hompg(R/m, M/(f)M) 2 Soc(M/(£)M).
In particular, Ext‘}%(R/m, M) is a finite-dimensional K -vector space.

Proof. We proceed by induction on d. If d = 0, we need only to observe that
Homp(R/m, M) = Soc(M). Now assume that d > 0. Then the isomorphism
(A.2) yields rr(M) = rr(M/f1M). Applying our induction hypothesis to
M/ f1 M, the desired result follows. ad

Let M be a d-dimensional Cohen—Macaulay R-module. We set
rr(M) = dimg ExtG(R/m, M).

The number rg(M) is called the Cohen—Macaulay type of M. A Cohen—
Macaulay ring R is called a Gorenstein ring if the Cohen—Macaulay type
of R is one.

H. Bass [Bas62] introduced Gorenstein rings as rings which have finite
injective dimension, and showed that these are exactly the Cohen—Macaulay
rings whose Cohen—Macaulay type is one.

In the proof of Proposition A.6.1 we have seen that if f is regular on
M, then rr(M) = rr(M/fM). Therefore induction on the length of an M-
sequence yields
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Proposition A.6.2. Let M be a Cohen—Macaulay R-module and £ an M-
sequence. Then rr(M) = rr(M/(£)M). In particular, if R is a Cohen—
Macaulay ring and £ is an R-sequence, then R is Gorenstein if and only if
R/(f) is Gorenstein.

Corollary A.6.3. Let R = S/I where I C S is a graded ideal, and let M be
a graded Cohen—Macaulay R-module. Then rr(M) = rg(M).

Proof. Let d = dim M and f an M-sequence of length n — d. Then Proposi-
tion A.6.2 implies that

rr(M) = dimg Homp(R/m, M/(f)M)
= dimg Homg(S/(z1,...,2n), M/(£)M) = rs(M).

O

The sequence x = x1,...,2, is an S-sequence and S/(x) = K. Thus
it follows from Proposition A.6.2 that S is a Gorenstein ring. A standard
graded K-algebra R of the form R = S/(f) with f is a homogeneous S-
sequence, is called a complete intersection. As an immediate consequence
of Proposition A.6.2 and Corollary A.6.3 we obtain

Corollary A.6.4. Let R be a complete intersection. Then R is a Gorenstein
7ing.

Not every Gorenstein ring needs to be a complete intersection. Indeed, the
class of Gorenstein rings is much larger than that of complete intersections.
A simple example of a Gorenstein ring which is not a complete intersection
is the following: let R = S/I where S = K[x1, 22, 23] and I = (2% — 23, 2% —
¥3, 1179, 1123, T2x3). The ideal I is not generated by an S-sequence, because
any S-sequence has length at most 3, while I is minimally generated by 5
elements. So R is not a complete intersection.

Next observe that o3 = 1 (23 —23) —z2(2172), and hence x5 € I. Similarly,
we see that z3, 23 € I. Obviously all other monomials of degree 3 belong to
I, so that (x1,22,23)% € I. Since the generators of I generate a 5-dimensional
K-subspace of S, we see that Hg(t) = 1+3t+t2. The element 2+ I generates
the 1-dimensional K-vector space Ra, and obviously belongs to the socle of
R. In order to see that R is Gorenstein it suffices therefore to show that no
nonzero element f € Ry belongs to the socle of R. In fact, let axy + bxo + cx3
be a nonzero linear form in S with a,b,c, € K. We may assume that a # 0.
Then z;(ax1 + bwy + cx3) € I, because 23 ¢ I and 179, 7123 € 1.

In contrast to this example we have the following result.
Proposition A.6.5. Let I C S = K|[z1,...,x,] be a monomial ideal such
that dim S/I = 0. Then S/I is Gorenstein if and only if S/I is a complete

intersection. If the equivalent conditions hold, then I is generated by pure
powers of the variables.
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Proof. Let I C S be graded ideal such that S/T is a zero-dimensional Goren-
stein ring. We claim that [ is an irreducible ideal. In fact, let J C S be a
graded ideal which properly contains I. There exists an integer k such that
mFJ C I. Let k be the smallest such integer. Then k& > 0 and m*=1.J ¢ I. Let
x € mF1J\ I. Since Soc(S/I) = S/m, and since x + I is a nonzero element
in Soc(S/I), it follows that Soc(S/I) C J/I. Therefore, I can never be the in-
tersection of two ideals properly containing I. In other words, I is irreducible,
as asserted.

Now assume that I is a monomial ideal. Then I is irreducible if and only
if I is generated by pure powers of the variables; see Corollary 1.3.2. Thus all
assertions follow. O

The Cohen—Macaulay type of a graded S-module has the following inter-
esting interpretation.

Proposition A.6.6. Let M be a Cohen—Macaulay graded S-module of di-
mension d. Then rg(M) = pBp_qa(M). In particular, if R = S/I is a
Cohen—Macaulay ring of dimension d, then S/I is Gorenstein if and only

if Bn-a(R) = 1.

Proof. We proceed by induction on dim M. If dim M = 0, then Soc(M) # 0.
Let x = x1,...,2, be the sequence of the variables of S, then H, (x; M) =
Soc(M). Applying Corollary A.3.5 it follows that rg(M) = dimg H,(x; M) =
Ba(M).

Now assume that dim M > 0. After extending K, if necessary, we may
assume that K is infinite. Then we find a linear form which is regular on M.
After a change of coordinates we may assume that this linear form is z,,. Then
M/xz, M is a Cohen—Macaulay S/x,S-module of dimension d—1. Applying the

induction hypothesis and Proposition A.6.2, we see that ﬁs/ on (M/x, M) =

ﬁfn/acl)s (a—1)y(M/xn M) = rg(M/x,M) = rg(M). Thus it remains to be shown

that ﬂS/I" (M/z, M) = B5_,(M). Actually one has, 65/“ (M/x,M) =
B2 (M) for all i, because if F is a graded minimal free S-resolution of M, then
F/x,F is a free S/x,,S-resolution of M /x,, M. Indeed, H;(F/z,F) is isomorphic
to Tor;(S/xyS, M) for all ¢, and Tor;(S/x,S, M) = 0 for ¢ > 0, since z,, is
regular on M. a

Let I C S be a graded ideal such that R = S/I is a d-dimensional Cohen—
Macaulay ring. Then the graded R-module

wr = Ext? (R, S)

is called the canonical module of R. It can be shown that wg is a Cohen—
Macaulay module of Cohen-Macaulay type 1; see [BH98, Chapter 3].

We denote by u(N) the minimal number of homogeneous generators of a
graded S-module. As a consequence of Proposition A.6.6 we obtain
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Corollary A.6.7. Let R be a standard graded Cohen—Macaulay ring. Then
wwr) = rg(R). In particular, R is Gorenstein if and only if wg is a cyclic
R-module.

Proof. Let F be the minimal graded free S-resolution of R. Then
wr = Coker(Fy_, — Fr_,).

Here N* denotes the S-dual for a graded S-module N. Since F_, is a free
S-module of the same rank as F;,_4, and since the image of the map F,_, —
F}_, is contained in mF)_,, it follows from Proposition A.6.6 that pu(wgr) =
w(Fr_y) = u(Fn_q) = rs(R), as desired. O

The canonical module wg is a faithful R-module; see [BH98, Chapter 3].
Thus Corollary A.6.7 implies that R is Gorenstein if and only if wr = R(a)
for some integer a.

The results stated in Proposition A.6.6 and in Corollary A.6.7 for the ring
R = S/I are equally valid if we replace S by a regular local ring and define
wp in the same was as above.

A.7 Local cohomology

We maintain our assumptions on R and M from Section A.4. We set
Tw(M)={ze M: m*2z =0 for some k}.

I'n(M) is largest submodule of M with support {m}. It is easily checked that
Tw(—) is a left exact additive functor. The right derived functors HE (—) of
I'w(—) are called the local cohomology functors. Thus if I is an injective
resolution of M it follows that

HE (M) = H'(lim Homg(R/m*, 1)) 2 lim H'(Hom,.(R/m", 1))
>~ lim Ext% (R/m", M).

We quote the following fundamental vanishing theorem of Grothendieck:

Theorem A.7.1 (Grothendieck). Let t = depth M and d = dim M. Then
Hi(M)#0 fori=t andi=d, and H., (M) =0 fori <t andi > d.

Corollary A.7.2. M is Cohen—Macaulay if and only if H: (M) = 0 fori <
dim M.

In the graded case all local cohomology modules HE (M) are naturally
graded R-modules and one calls the number

reg(M) = max{j: H.(M);_; # 0 for some i}
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the regularity of M.

It has been shown by Eisenbud and Goto ([EG84] or [BH98, Theorem
4.3.1]) that in the case that M is a (finitely generated) graded S-module one
has

reg(M) = max{j: Tor;(K,M);; # 0 for some i}.

Local cohomology can be computed by means of the modified Cech
complex. We fix a system of elements x1,...,x, in m which generates an
m-primary ideal, and define the complex

C:o0-C'>Cl—=...5C"=>0

with C* = @1<i1<i2<---<ik<n Ry, x,y-z;, - The differentiation dk. k=
C*t1 is defined on the component Ry wiyzs, — R to be

i Ljy L Ty
r—1 : :
(—=1)"""a. Here a is natural homomorphism Ry, sz, — (Ray 2iy 24, )a;,

if {iy,i0,...,9} C {j1,- - ,j/';, ..y Jk+1}, and is the zero map otherwise.

For all 7 one has
HL(M)=H(C®gM). (A.4)

We use (A.4) to compute the local cohomology of a Stanley—Reisner ring.
Let A be a simplicial on the vertex set [n] and let R = K[z1,...,%,]/Ia. In
other words, R = K[A] is the Stanley—Reisner ring of A. We let C be the
modified Cech complex of R with respect to the sequence z1, ..., x,. We note
that C is a Z™-graded complex. The components of C are of the form R,
where z is homogeneous with respect to the Z™-grading. Let a € Z™; then we
set

(Ry)a = {$Lm r is homogeneous and degr — mdegx = a},

and extend this Z"-grading naturally to C. This Z"-grading is compatible
with the differentials of C and hence all local cohomology modules H: (R) are
naturally Z™-graded.

Theorem A.7.3 (Hochster). Let Z™ = {a € Z": a; <0fori=1,...,n}.
Then

i dimg H;_ p|_1(linka F; K), if a € Z™, where F = supp a;
Hm(K[A])a:{O K I 1( 4 ) ifagzm. PP

Proof. Let F be a subset of the vertex set of A. The star of F is the set
stara = {G € A: FUG € A}. Notice that stara F is a subcomplex of A.
Let a € Z"; the a-graded component C, of the modified Cech complex C of
K|[A] is a complex of finite-dimensional K-vector spaces, and there exists an
isomorphism of complexes

o : Cq — Homg(C(linkgtar 1, Ga; K)[—j — 1], K), j =|Gal.
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Here Go = {i € [n]: a; <0} and H, = {i € [n]: a; > 0}, and

C(linkgtar, Ga; K)[—7 — 1]

denotes the augmented oriented chain complex of linkgtay 7, Ga, homologically
shifted by —j — 1. Note that

Homy (C(linkstar i, Ga; K)[—7 — 1], K) = (K{linkstar i, Ga}, €)[—J],

see Section 5.1.4.
The map « is defined as follows: let x = x;, - - - z;, with 43 < iy < -+ <
and set F' = {iy,...,ir}. We first observe that
(Ru)a = K, ifG,C Fand FUH, € A,
/8710, otherwise.

It follows that (C?), has a K-basis consisting of basis elements bx indexed by
F C [n] with |F| =4, and such that G, C F and F U H, € A. Now we let o
be the K-linear map defined by

ot ((Ci)a — K{linkgar g, Gati—j, br— €F\Ga-
Passing to homology, the map of complexes « yields the following isomorphism
H(K[A)a = H G linkgg, g, Ga; K),

so that dimp HE (K[A])a = dimg H,_ g, |1 (linkstar 7, Ga; K).

If Hy # 0, then linkgtay g, Ga is acyclic, and if Hy = ), then star H, = A,
so that in this case linkgtay g7, Ga = linka Ga. Thus the theorem follows from
the fact that H, = () if and only if a € Z™. O

A.8 The Cartan complex

We give a short introduction to the Cartan complex which for the exterior
algebra plays the role of the Koszul complex for the symmetric algebra.

Let K be a field, V a K-vector space with basis eq,...,e, and E the
exterior algebra of V.

Let v =1, ..., v, be asequence of elements of degree 1 in E. The Cartan
complex C, (v; E) of the sequence v with values in E is defined as the complex
whose i-chains C;(v; E) are the elements of degree i of the free divided power
algebra E(x1,...,%m). Recall that E(x1,..., ) is the polynomial ring over
FE in the set of variables

27 i=1,....om, j=12,...

modulo the relations
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NONC (j + k) 20,
J

We set xEO) =1, xl(l) =gx; fori=1,...,m and xl(a) =0 fora <0.

The algebra E(x1,...,Ty) is a free F-module with basis
x@ = xgal)xg”) ceglam)a=(ay,...,am) € .

We say that x(®) has degree i if |a| = i where |a| = a; + -+ + ay,. Thus
Ci(v;E) = ®|a|:i Ex(a),
The E-linear differential & on C,(v; E) is defined a follows: for x® =

x&al) cen ngll’") we set

3 m

A(x@) = Zvixgal) cogl@ T (am)
=1

One readily checks that 9 0 9 = 0, so that (C,(v; E), 9) is indeed a complex.
Moreover,

9(9192) = 910(g2) + 9(g1)92 (A.5)

for any two homogeneous elements ¢g; and gs in C, (v; E).
Let G be the category of graded E-modules (in the sense of Defini-
tion 5.1.1), and let M € G. We define the complex

C.(viM)=M®gC.(v; E),

and set H;(v; M) = H;(C,(v; M)). We call H;(v; M) the ith Cartan homol-
ogy module of v with respect to M. Note that each H;(v; M) is a naturally
graded E-module.

Proposition A.8.1. Let J C E be the ideal generated by the sequence v =
ViyeeryUm. Then JH.(v; M) = 0.

One good reason to consider the Cartan complex is the following result:

Theorem A.8.2. For any graded E-module M and each i > 0 there is a
natural isomorphism

TOl"l-E(M, K) = Hi(elv <o C6nj M)
of graded E-modules.

For the proof of the theorem it suffices to show that C,(ey,...,e,; F) is
acyclic with Hg(ey,...,en; E) = K. This will easily be implied by the next
results.
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Proposition A.8.3. Let M be a graded E-module, v.= vy, ..., a sequence
of elements in E1 and v’ the sequence v1, . ..,v,_1. Then there exists an exact
sequence

0 —— C.(v;M) —— C.(v;M) —— C.(v;M)[-1] —— 0

of complexes. Here v is the natural inclusion map, while T is defined by the
formula

T(co + C12m + -+ -+ cxx™) = ¢ + ot + -+ )
where the ¢; belong to C_;(v'; M).
The proof is straightforward and is left to the reader.

Corollary A.8.4. There exists a long exact homology sequence

S H(V;M) Y Hi(viM) 2 H (v M)(-1)
e i1(V;M) —— H; y(v; M) ——

of graded E-modules, where o is induced by the inclusion map ¢, 5; by T, and
0;—1 1s the connecting homomorphism. If z = ¢y + 1@ + -+ + Ci_1Tm =1

a cycle in Ci_1(v; M), then 6;,—1([z]) = [covm)]-

We are now in a position to complete the proof of Theorem A.8.2 by
showing that C,(e1,...,e,; E) is indeed acyclic: we show by induction on j
that Hi(e1,...,e;; E) =0 for all ¢ > 0. The assertion is clear for j = 1, since
C.(ey; E) is the complex

e B2 2 Eyy 2 E 0,

and since the annihilator of e; in E is the ideal (e7).
We now assume that the assertion is already proved for j, let v =
e1,...,e;41 and v/ =eq,...,e;, and consider the long exact sequence

- — Hi(v;E) —— H;(v;E) —— i—1(v; E)(—1)
H,  (V}E) —— .-

We show by induction on ¢ that H;(v; E) = 0 for ¢ > 0. By our induction
hypothesis (induction on j) we have Hy(v’; E) = 0. Therefore we obtain the
short exact sequence

0 —— Hi(v;E) —— B/(v)(-1) —"— E/(v')

)
Here § maps the residue class of 1 in E/(v) to the residue class of e;4; in
E/(v'). Since the annihilator of ej;1 in E/(v’) is generated by e; 11, it follows
from this sequence that Hyi(v; E) = 0.
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Suppose now that ¢ > 1. Our induction hypothesis (induction on j) and
the above exact sequence yields

HZ‘(V; E) = Hifl(V; E)

Applying the induction hypothesis (induction on i) we see that H;(v; E) =0,
as desired.

Let again M € G. The Cartan cohomology with respect to the sequence
V = 01,...,0, is defined to be the homology of the cocomplex C*(v; M) =
*Hompg(C. (v; E), M). Explicitly, we have

C'(V;M):08—O>CO(V;M) a—1>C’1(V;M) — .,

where the cochains C* (v; M) and the differential 9 can be described as follows:
the elements of C*(v; M) may be identified with all homogeneous polynomials

Y aMmay? of degree i in the variables yi,. ..,y with coefficients ma € M,
where as usual for a € Z7, y* denotes the monomial yi"y5*---ysr. The

element myy® € C*(v; M) is defined by the mapping property

a/_(b)y _ Ma for b:a,
may" (X )_{O for b # a.

After this identification 0 is simply multiplication by the element y, =
> i1 viyi. In other words, we have

D CHv; M) — CF (v M),  f— yof.

In particular we see that C°(v;FE) may be identified with the polyno-
mial ring Ely1,...,Ym] over E, and that C*(v; M) is a finitely generated
C"(v; E)-module. It is obvious that cocycles and coboundaries of C*(v; M)
are Ely1,...,Ym]-submodules of C*(v; M). As E[y1,...,Ym] is Noetherian, it
follows that the Cartan cohomology H'(v; M) of M is a finitely generated
Ely1, ..., ym]-module.

Let J C E be the ideal generated by v. Then JH"(v; M) = 0, and hence
H*(v; M) is in fact an (E/J)[y1,- - ., Ym|-module. Viewing (E/J)[y1, .- -, Ym]
a standard graded E/J-algebra, the Cartan cohomology module H*(v; M) is
a finitely generated graded (E/J)[y1, ..., Ym]-module whose ith graded com-
ponent is H(v; M) for i > 0, Notice that each H'(v; M) itself is a graded
E/J-module, so that H"(v; M) is a bigraded (E/J)[y1, .- ., Ym]-module with
each y; of bidegree (—1,1).

As in Chapter 5 we set MY = *Hompg(M, E). Cartan homology and co-
homology are related as follows:

Proposition A.8.5. Let M € G. Then

Hy(viM)Y =2 H(v; M) forall i.
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Proof. Since F is injective as shown in Corollary 5.1.4, the functor (—)" com-
mutes with homology and we obtain

1%

Hi(v; M)" = H'(*Hompg(Ci(v; M), E))
H'(*Hompg (C;(v; E), M) = H'(v; M").

O

By applying the functor *Hompg(—, M) to the short exact sequence of
complexes in Proposition A.8.3 (with M = E) we obtain the short exact
sequence of cocomplexes

0— C'(v;M)[-1] — C*(v; M) — C*(v'; M) — 0,
from which we deduce

Proposition A.8.6. Let M € G. Then with v and v’ as in A.8.3 there exists
a long exact sequence of graded E-modules

oo — H7Yv; M) — H™YV ;M) — H7 ' (v; M)
25 HY (v; M)(=1) — H' (Vi M) — -+
Proof. We show only that the map
H'™H(vi M) — H'(v; M) (1),

which is the dual of 3;, is indeed multiplication by y,,. We show this on the
level of cochains. In order to simplify notation we set C; = C;(v1,...,vm; E)
for all 4, and let

~v:*Hompg(C;_1, M) — *Hompg(C;, M)
be the map induced by 7: C; — C;_1, where

T(x(b)) _ xibl) . ~m£§m_1), if b, > 0,
0, otherwise.

Our assertion is that v is multiplication by ¥, .
For all z(?) € C; and ny? € *Hompg(C;—1, M) with n € M we have
v(ny?)(x®)) = ny?(7(x®))). This implies that

n, lf(blavbm): (alv"'vam+1)a
0, otherwise.

() (™) = {

Hence we see that v(ny®) = ny®ym, as desired. O
The next proposition shows that for a generic basis vy, ..., v, of Ey, the y;
act as generic linear forms on H"(vy,...,v,; M). We fix a basise = ey, ..., e,

of E1. Then we have
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Proposition A.8.7. Let v . = v1,...,v, be a K-basis of Ey with v; =
Sty aiie; for j =1,...,n. Then there exists an isomorphism of graded K-
vector spaces
o:H (e; M) — H (v; M)
such that
o(fe) = a(f)e(c)

forall f € Kly1,...,yn] and all ¢ € H'(v;M). Here o : K[y1,...,yn] —
Kly1,...,yn] is the K-algebra automorphism with a(y;) = > i, ajy; for
j=1...,n.

Proof. Let B: E[y1,...,yn] — Ely1,...,yn] be the linear E-algebra automor-
phism deduced from « by the base ring extension F/K. Then 8(ye) = yv, s0
0 induces a complex isomorphism

C.(e; M) B C.(V;M)v g(ylvvym) = g(a(yl)a"'7a(yn))7

which induces the graded isomorphism ¢: H'(e; M) — H'(v; M) with the
desired properties. a

The proposition shows that if we identify H* (v; M) with H"(e; M) via the
isomorphism ¢, then multiplication by y; has to be identified with multipli-
cation by a1 (y;).
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Geometry

B.1 Convex polytopes

We briefly summarize fundamental facts on convex polytopes. All proofs will
be omitted. We refer the reader to Griinbaum [Gru03] for detailed information
about convex polytopes.

A nonempty subset X in R" is called convex if for each x and for each y
belonging to X the line segment

{tx+(1-t)y:teR, 0<t<1}

joining x and y is contained in X. If X C R" is convex, then for each finite
subset {a1,...,as} of X its convex combination ) ., a;a;, where each
a; € R with 0 < a; <1 and where Zle a; = 1, belongs to X.

Given a nonempty subset Y in R™, there exists a smallest convex set X in
R™ with Y C X. To see why this is true, write A = {X )} e for the family of
all convex sets X in R™ with Y C X,. Clearly A is nonempty since R™ € A.
Since each X, is convex with Y C X, the intersection X = ﬂ)\eA X, is again
a convex set which contains Y. Since X € A and since X C X, for each A € A,
it follows that X is a smallest convex set in R™ with Y C X, as desired.

The notation Conv(Y') stands for the smallest convex set which contains
Y and is called the convex hull of Y.

It follows that the convex hull Conv(Y") of a subset Y C R™ consists of all
convex combinations of finite subsets of Y. In other words,

Conv(Y) = {Zaiai €Y, a0, R 0<a; <1, Zai =1,s>1}.
i=1 =1

Definition B.1.1. A convex polytope in R" is the convex hull of a finite
set in R".

Recall that a hyperplane in R™ is a subset H C R™ of the form

J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics 260, 285
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H= {(xla"-a-rn) eR™: Zaixi :b}’
=1

where each a; € R, b € R and (ay,...,a,) # (0,...,0). Every hyperplane
‘H C R™ determines the following two closed half-spaces in R™:

H(+) = {(Il, . 7$n) eR™: Za'ixi > b}a

i=1
HE = {(z1,...,2,) ER™ > azz; < b}
i=1

Let P C R™ be a convex polytope. A hyperplane H C R™ is called a
supporting hyperplane of P if the following conditions are satisfied:

e Either P ¢ HH) or P c H();
DAPNHATP.

Definition B.1.2. A face of a convex polytope P C R™ is a subset of P of
the form P NH, where H is a supporting hyperplane of P.

Theorem B.1.3. A convex polytope P C R™ has only a finite number of
faces, and each face of P is again a convex polytope in R™.

Theorem B.1.4. (a) If F is a face of a convex polytope P C R™ and if F' is
a face of F, then F' is a face of P.

(b) If F and F' are faces of a convex polytope P C R™ and if FNF' # 0,
then F N F' is a face of P.

A vertex of a convex polytope P C R" is a point a € P for which the
singleton {a} is a face of P. Let V = {aq,...,as} denote the set of vertices
of P. Write P — «; for the subset {x — a; : x € P} C R™. The dimension
dim P of P is the dimension of the vector subspace in R™ spanned by P — «;,
which is independent of the particular choice of a;. The dimension of a face
F of P is the dimension of F as a convex polytope in R". An edge of P is a
face of P of dimension 1. A facet P is a face of P of dimension dimP — 1.

Theorem B.1.5. Let V' denote the set of vertices of a convex polytope P C

R™. Then

(i) P = Conv(V);

(ii) If F is a face of P, then F = Conv(V NF). In particular the vertex set
of FisVNUF.

Theorem B.1.6. Let Fi,...,F, denote the facets of a convezx polytope P C
R"™ and H; C R™ a supporting hyperplane of P with F; = P N'H; and with
P C H;+). Then
q
_ (+)
P=[\H" .

Jj=1
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Conversely,

Theorem B.1.7. Let Hi, ..., Hq be hyperplanes in R and suppose that P =
;1»:1 H§-+) is a nonempty subset in R™. If P is bounded, then P is a convex

polytope in R™. Moreover, if the decomposition ()I_ H) s irredundant, then
j=1""%j
PNHi,...,PNHy are the facets of P.

B.2 Linear programming

Fix positive integers n and m and let A = (a;5) 1<i<n be n X m matrix with
1<j<m

each a;; € R. The notation AT stands for the transpose of A. Let b € R™ and
c € R™. As in Chapter 11, for vectors u = (uy,...,u,) and v = (v1,...,v,)
belonging to R", we write u < v if all component v; — u; are nonnegative.

A linear programming is the problem stated as follows: Maximize the
objective function

CX—r

for x € R™ subject to the condition
AxT <b", x>0. (B.1)

Its dual linear programming is the problem stated as follows: minimize
the objective function
by'
for y € R™ subject to the condition
AlyT >, y>o. (B.2)

A vector x € R™ satisfying (B.1) is called a feasible solution. Similarly, a
vector y € R™ satisfying (B.2) is called a feasible dual solution. A feasible
solution which maximizes cx ' is called an optimal solution, and a feasible
dual solution which minimizes by " is called an optimal dual solution.

Theorem B.2.1 (Duality Theorem). If x is a feasible solution andy is a
feasible dual solution, then
cx | < byT.

‘We now come to the results which characterize vertices of convex polytopes
in the language of linear programming.

Theorem B.2.2. (a) Let P C R™ be a convex polytope. Then for any ¢ € R™
there is a vertex a of P which mazimizes cx ', where X Tuns over P.

(b) Let « be a vertex of a convex polytope P C R™. Then there exists a
vector ¢ € R™ such that « is a unique member of P mazimizing cx ', where
x runs over P.

A standard reference on linear programming and integer programming is
Schrijver [Sch98].
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B.3 Vertices of polymatroids

We now come to the problem of finding the vertices of a polymatroid. Let
P C R be a polymatroid on the ground set [n] and p its ground set rank
function. Recall from Theorem 12.1.3 (a) that

P ={xecR} :x(A) <p(A),ACn]}.

Thus in particular Theorem B.1.7 guarantees that P is a convex polytope in
R™.

Given a permutation 7 = (i,...,i,) of [n], we set AL = {i;}, A2 =
{i1,i2}, ..., A" = {i1,...,in}. Let v(k,m) = (v1,...,v,), where k € [n] and
where

/Ull = p(A}r)J

Vigyr = Vigyo =
Lemma B.3.1. One has v(k,m) € P.
Proof. Let v = v(k,7) and A C [n]. What we must prove is v(A4) < p(A).

Since p is nondecreasing, it may be assumed that A C {41,...,4x}. Let j € [n]
denote the biggest integer for which i; € A. By using induction on |A[, one

has v(A\ {i;}) < p(A\ {¢;}). Since
v(A) = v(A\ {i;}) + (i) < p(A\{i;}) + p(AL) — p(ATTH)

and since _ _
p(AN\{iz}) + p(AL) < p(A) + p(A7),
one has v(A) < p(A), as desired. O

Lemma B.3.2. Each point v(k,m) € P is a vertex of P.

Proof. Let H; denote the hyperplane in R™ consisting of all points (z1, ...,
xn) € R™ with ‘

Ty + Ti, + e +‘rij = p(AgT)v
where 1 < j < k. Let H; denote the hyperplane in R™ consisting of all points
(z1,...,2,) € R™ with

where Kk +1 < 57 < n. One has P C H;f) and v(k,m) € H; for all
j. In other words, each hyperplane H; is a supporting hyperplane of P
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with v(k,7) € H;. In addition, each hyperplane H; is a supporting hyper-
plane of P with v(k,7) € H}. Hence Theorem B.1.4 (b) guarantees that

PN (ﬂ] L H) N (j—p M) is a face of P. It is clear that (ﬁ;C 1 H;)N
(Mj=p1 M5) = {v(k,m)}. Hence v(k,m) € P is a vertex of P, as required. O

We are now in the position to complete a proof of Theorem 12.1.4. For a
vector ¢ = (c1,...,¢,) € R™ we define a permutation m = (iy,...,i,) of [n]
such that

Ciy 2 Cpp = 20y, >020¢,, > 20c,

and consider the linear programming (L.) as follows:

Maximize cx'

subject to
x e P.

Lemma B.3.2 guarantees that v(k, ) is a feasible solution of (a.). We pre-
pare the 2" — 1 variables y4, where §) # A C [n], and consider the linear

programming (L) as follows:

Minimize Z p(A)ya
0£AC[n]
subject to

ZyAzcja j=1...,n

JjEA

We then introduce the point y* = (y%)g£acn defined by setting

* .
Yai = Ci; = Cijps j=1,...k—1;

y4 =0 otherwise.

Lemma B.3.3. The linear programming (L) is the dual linear programming
of (Lc) with y* = (Y4 )p£Acin) @ feasible dual solution. Moreover, one has

vk =Y p(A)yi.

0#AC[n]

Proof. 1t is clear that (L) is the dual linear programming of (L.) with y* =
(¥4 )o-£Acn) a feasible dual solution. Let v(k, ) = (v1,...,v,). Then
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e

(p(AT) = p(G71)) + ciyp(A7)

H
™ .
(] Mw
- N

(Cig - ci]+l)p(A-7]"f) + Cikp(A’:r)

yA7

3>M H

as desired. O

Theorem B.2.1 now guarantees that v(k, ) is an optimal solution of (L.).
Thus in particular every vertex is of the form v(k, 7). This fact, together with
Lemma B.3.2 completes the proof of Theorem 12.1.4.

Ezample B.3.4. Let n = 3 and P the polymatroid given by the linear inequal-
ities

T <2

To 3

r3 <5

T+ x9 <4

zg +x3 < 65

1 + x3<6

T+ +23 <7

x; >0

Let ¢ = (7,3,1). Thus k = 3, 7 = (1,2,3) and v(3,7) = (2,2,3). The dual
linear programming (L}) is to minimize the objective function

2y1y + 3yg2y + 5Y3y + 4yq1,2) + 6yg2,3) + 6yp131 + TY(1,2,3)
subject to
yry T Y2y T Y3y T Y23 = 7
Yoy t Yq1,2y T Y23y T ¥q1,2,3) = 3;

Y3y Y13y H Y23 T Y123 = L
ya > 0.

One has a dual feasible solution

y>k = (yil}, y?Q}v y??,}a y?1,2}7 y?273}, y?1,3}a y?1,213}) = (47 07 Oa 23 07 07 1)

with
cv(3,m) = Z p(A)yl = 23.
0#£AC[3]
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B.4 Intersection Theorem

The intersection theorem for polymatroids due to Edmonds [Edm?70] has
turned out to be one of the most powerful results in combinatorial opti-
mizations. We refer the reader to Schrijver [Sch03] and Fujishige [Fuj05] for
background on Edmonds’ intersection theorem.

Theorem B.4.1 (Edmonds’ Intersection Theorem). Let P; and Py be
polymatroids on the ground set [n] and p; the ground set rank function of P;
fori=1,2. Then

max{u([n]) : u € Py NP2} = min{p1(X) + p2([n] \ X) : X C [n]}.

Moreover, if P1 and Ps are integral, then the mazimum on the left-hand side
is attained by an integer vector.

B.5 Polymatroidal Sums

Somewhat surprisingly, Theorem 12.1.5 is one of the direct consequences of
Edmonds’ intersection theorem. Let Py, ..., Py be polymatroids on the ground
set [n] and p; the ground set rank function of P;, 1 < i < k. We introduce
p: 2 — R, by setting p = Zle pi. It follows immediately that p is a
nondecreasing and submodular function with p(#) = 0. We write P for the
polymatroid on the ground set [n] with p its ground set rank function.

Lemma B.5.1. One has PV --- VP, C P.

Proof. Let x € Py V---VPg. Then x = x1 4 - - +x3, with each x; € Pj. Hence

k k
x(4) = S x(4) £ 3 pilA) = plA).
i=1 i=1
for each A C [n]. In other words, x € P. Thus Py V---V P, C P. O

Lemma B.5.2. One has PCP1V---V Py

Proof. Let Vi = {1,... . n(} be a “copy” of [n] and let V stand for the
disjoint union V; U --- U Vj. We associate each subset X C V with

X ={aen]:a? e X for some 1<i<k}Cln]

We introduce  : 2V — R by setting u(X) = Zle pi(X NV;), where X C V.
Let x € P. We introduce ¢ : 2V — R by setting £(X) = x(X), where X C V.
It follows that both p and £ are ground set rank functions of polymatroids on
the ground set V. Let Q,, (resp. Q¢) be the polymatroid on V' with p (resp.
£) its ground set rank function. Now, Theorem B.4.1 guarantees that
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max{u(V):ue Q,NQ¢} =min{pu(X)+¢(V\X): X CV}

k
=min{> p(XNV) +x(V\X): X CV}
121 .
= min{z pi(X;) +x([n] \ ﬂ Xj): X; C[n]}.

Since each p; is nondecreasing, one has p;(X;) > p(ﬂ?zl X;). Hence

k
max{u(V):ue€ Q,NQ¢} = min{Zpi(Y) +x([n]\Y):Y C [n]}.

i=1

Since x € P, one has x(Y) < p(Y) = Zle pi(Y) for all Y C V. Thus

k
x([n]) = x(Y) +x([n] \ Y) < Z n]\Y).

Consequently,

k k k
min{»  pi(X;) +x([n] \ () X;) : X; C [n]} = > pi(0) +x([n]) = x([n]).
i=1 j=1 i=1

In other words,

max{u(V):ue Q, N Q¢} =x([n]).
Hence there is u € Q, N Q¢ with u(V) = x([n]). Thus, in particular, since
u € Q,, one has Zle u(a) < x(a) for all a € [n]. However, since u(V) =
x([n]), it follows that Zle u(a) = x(a) for all a € [n]. We define x; € R",
1 <i <k, by setting x;(a) = u(a®) for all a € [n]. Then x = x; + -+ + Xj.
Since u € Q,,, one has x; € P;, as desired. a

It follows from Lemmata B.5.1 and B.5.2 that the polymatroidal sum
PV - -VPy is a polymatroid on the ground set [n] with p = Zle pi its ground
set rank function. Moreover, if each p; is integer valued, then p = Zle pi is
integer valued. In other words, if each P; is integral, then P; V -+ V Py is
integral. Finally, in the proof of Lemma B.5.2, if each P; is integral and if
x € P is an integer vector, then Theorem B.4.1 guarantees that u € Q,, N Q¢
can be chosen as an integer vector. Thus in particular each x; € P; is an
integer vector. This completes the proof of Theorem 12.1.5.

B.6 Toric rings

Let P C R’ denote an integral convex polytope of dimension d. If u =
(u(1),...,u(n)) € P NZ", then the notation x" stands for the monomial
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xif(l) .28 The toric ring K[P] is the subring of K[z1,...,zy,t] which is
generated by those monomials x"t with u € PNZ". In general, we say that P
possesses the integer decomposition property if, for each w € Z™ which
belongs to ¢P = {qv : v € P}, there exists uy,...,u, belonging to P NZ"
such that w =uy +--- + u,.

Lemma B.6.1. If an integral convex polytope P C R’} possesses the integer
decomposition property, then its toric ring K[P] is normal.

Proof. Since P possesses the integer decomposition property, it follows that
the toric ring K[P] coincides with the Ehrhart ring [Hib92, pp. 97] of P. Since
the Ehrhart ring of an integral convex polytope is normal by Gordan’s Lemma
([BH98, Proposition 6.1.2]), the toric ring K[P] is normal, as desired. O

One of the most influential results on normal toric rings, due to Hochster
[Hoc72], is the following:

Theorem B.6.2 (Hochster). A normal toric ring is Cohen—Macaulay.

Stanley [Sta78] and Danilov [Dan78] succeeded in describing the canonical
module of a normal toric ring.

Theorem B.6.3 (Stanley, Danilov). Let P C R’ be an integral convex
polytope and suppose that its toric ring K[P] is normal. Then the canonical
module Q(K[P]) of K[P] coincides with the ideal of K[P] which is generated
by those monomials *t? with u € q(P \ OP) NZ™.
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